آنالیز ژنتیکی چند صفته پارامترهای منحنی شیردهی گاومیش های خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم دامی. دانشکده علوم دامی و صنایع غذایی. دانشگاه علوم کشاورزی و منابع طبیعی خوزستان. ملاثانی. ایران

2 گروه علوم دامی. دانشکده علوم دامی و صنایع غذایی. دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.ملاثانی.ایران

چکیده

زمینه ی مطالعاتی و هدف: منحنی های شیردهی، اغلب به منظور ارائه خلاصه ای از الگوی تولید شیر، کارآیی بیولوژیکی و اقتصادی حیوان استفاده می شوند. در این پژوهش، به منظور توصیف منحنی شیردهی گاومیش های خوزستان، از شش مدل ریاضی (وود، ویلمینک، چند جمله ای معکوس، لگاریتمی مختلط، علی و شفر و دایجکسترا) استفاده شد. روش‌کار: بدین منظور از 103760 رکورد تولید شیر روز آزمون 14280 رأس گاومیش تولید شیر دوره ی شیردهی اوّل که در سال های 1372 تا 1399 توسّط مرکز جهاد کشاورزی استان خوزستان ثبت و جمع آوری شده بود، استفاده شد. فراسنجه‌های منحنی شیردهی با استفاده از رویه ی NLIN نرم افزار SAS نسخه 9.4 و رکوردهای روز آزمون برآورد گردید. مقایسه ی شایستگی مدل ها براساس ضریب تبیین (R2) ، ریشه ی میانگین مربّعات خطا (RMSE) و معیار اطّلاعات آکائیک (AIC) انجام شد. نتایج: مدل ریاضی وود با داشتن بالاترین ضریب تببین و مقادیر پایین تر شاخص RMSE و AIC نسبت به مدل های دیگر، بهترین برازش منحنی شیردهی را ارائه داد. این مدل با دقّت بیشتری نسبت به سایر توابع، می‌تواند زمان رسیدن به اوج تولید شیر را برآورد نمایند. اوج تولید شیر گاومیش های خوزستان (30/8 کیلوگرم در روز) به طور متوسّط در هفته ی دهم (روز 69) پس از زایش بود. اثرفصل زایش بر روی صفات شیردهی معنی داری نبود در حالی که سال زایش اثری معنی دار داشت (05/0>P). مقدار وراثت پذیری صفات منحنی شیردهی در آغاز تولید (a)، شیب گامه ی افزایشی (b) و شیب گامه ی کاهشی (c) به ترتیب 57/0، 27/0 و 48/0 بود. همبستگی ژنتیکی بین صفات منحنی شیردهی در دامنه 55/0- (a و b) تا 196/0 (b و c) قرارداشت. نتیجه گیری نهایی: به طور کلی، ارزیابی مدل های توصیف کننده منحنی شیردهی با استفاده از مدل های غیر خطّی و تجزیه و تحلیل چند صفتی، گامی مؤثّر در شناسایی گاومیش های با ظرفیت ژنتیکی بالا جهت بهبود و افزایش بازده تولید شیر ایفا می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Multiple-trait genetic analysis of lactation curve parameters in Khuzestani buffaloes

نویسندگان [English]

  • saeid neysi 1
  • jamal fayazi 2
  • hedayatollah roshanfekr 2
1 Phd student in Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan. Mollasani. iran
2 Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan. Mollasani. iran
چکیده [English]

Introduction: Improving the performance of economic traits of domestic livestock by means of sounds breeding programs could elaborate meeting the protein demands of the human world population. The water buffalo, also called the domestic water, bears up substantial value in terms of milk and meat production. Khuzestani buffalo, the subspecies of domestic Asian water buffalo (Bubalus bubalis) has become a strategic animal species in Khuzestan province, Iran, due to its ability to adapt to adverse environmental conditions, low quality feed sources dependency and high quality products. Archaeological and ancient records show little evidence regarding the expansion of the Khuzestani buffalo. Many people in the region depend on this species for their livelihoods than on any other domestic animal. In this regards, the buffalo lactation could have crucial role in farmers' economy. In general, having knowledge of lactation curve, may shed some lights on management and farm-based operation of milk production system. The lactation curve is a graphical representation tool that reflects the effect of couple of numbers of different factors on milk production during lactation; therefore, it is useful in making better management decisions. In other words, it could summarize the pattern of milk production, biological and economic efficiency of the animal. Several models have been suggested to describe the lactation curves. In this study, in order to estimate the association between different fitted lactation curves and their comparisons on Khuzestani buffalo, six nonlinear mathematical models (Wood, Wilmink, inverse polynomial, Complex logarithm, Ali and Schaefer and Digestra) were used. Material and methods: The data used in this study, consisted of 103760 test day records of milk yield of 14280 buffalu in the first parity that collected by the Agricultural Jihad Center of Khuzestan province during 1993 to 2020. The Microsoft Excel was used to edit the data. Animals with unknown birth and calving dates were removed. Those fixed effects that had significant effects on the coefficients of lactation curve (P < 5%) were included in the final model. The lactation curve parameters were estimated using the nonlinear regression procedure (NLIN) of SAS software version 9.4 on test day records. Evaluation of goodness of fit was based on the coefficient of determination (R2), root mean square error (RMSE) and Akaike information criterion (AIC). The (Co) variance components were estimated by multi-trait animal model using restricted maximum likelihood method run in WOMBAT software. Results and discussion: Descriptive statistics of milk production of Khuzestani buffaloes based on 103760 records from different areas shown that the average milk production was 8.048 kg, standard deviation was 3.047 and coefficient of variation was 37.87 as well. Wood's mathematical model provided the best fit of the lactation curve due to the highest value for the R2 and lower values for RMSE and AIC compared to the other models and it obtained as 0.88. The a, b and c parameter values of Wood’s model were estimated 6.91, 0.057 and 0.00083, respectively. The results showed that the wood model was able to estimate the time of peak milk yield more accurately than the other models. The peak milk yield of Khuzestani buffaloes (8.30 kg/d) appeared on average in the tenth week (day 69) after calving. The heritability of lactation curve traits for initial yield (a), upward slope of the curve (b) and downward slope of the curve (c) were obtained 0.57, 0.27 and 0.48, respectively. In this study, the persistency(s) value for typical lactations were lactation curve were estimated 7.49. The genetic correlations among lactation curve parameters ranged from -0.55 (upward slope of the curve and initial yield) to 0.138 (upward and downward slope of the curve), whereas the phenotypic correlations ranged from -0.35 (Between initial yield and the upward slope of the curve) to +0.196 (b and c). The solutions of mixed model equations revealed that Buffalo with IDs 3436, 3410, 3360, 2868, 24, and 3174 had the highest breeding value for coefficient a. In other hand, buffalo 3438, 3409, 3418, 3361, 3282, and 3169 showed the highest breeding value in the coefficient b. Finally, the buffaloes that obtained the highest hereditary value in different coefficients of lactation curve were introduced as the superior buffaloes. By knowing the best buffaloes in terms of breeding value for parameters a and b, it is possible to select buffaloes to be parent for next generation. In general, evaluating lactation curve equations using nonlinear models and multi-trait analysis is an effective step in identifying buffaloes with high genetic potential to improve and increase milk production efficiency. The results of the present study showed that among the six mathematical models studied, Wood's incomplete gamma function had more viability for fitting the lactation curve of Khuzestani buffalo. The effect of calving season was not significant on lactation parameters while year of calving had a significant effect. Negative and moderate genetic correlations between initial production parameters (a) and upward slope (b) of the lactation curve indicate that keeping on with higher initial production level will have a lower rate of increase until peak production. In the present study, multivariate analysis led to the relationship of all coefficients of the lactation curve with each other and as a result more realistic parameters were estimated for them. It is suggested that in future studies, a computer-aided economic production system be designed and the economic coefficients related to the parameters of the lactation curve be estimated for integration into the selection index. Also, in order to improve the performance of Khuzestani buffalo, it is recommended to study the genomic relationship of milk production curve parameters.

کلیدواژه‌ها [English]

  • Khuzestan buffalo
  • lactation curve
  • mathematical models
  • heritability
Ali TE and Schaeffer LR, 1987. Accounting for covariances among test day milk yields in dairy cows. 
Canadian Journal of Animal Science 67: 637-644.
Arianfar M, Rokouei M, Dashab GR, Faraji-Arough H, 2018. Comparative evaluation of some mathematical 
fuctions in describing the lactation curve of Iranian dairy cattle. Journal of Animal Productions 20:351-
363. 
Arianfar M, Rokouei M, Dashab GR, Faraji-Arough H, 2020. Genetic evaluation of lactation curve 
parameters and the estimation of inbreeding effect on them in Holstein cows. Animal Science, 129:125-
140. 
Barbosa SBP, Pereira RGA, Santoro KR, Batista AMV and Neto R, 2007. Lactation curve of cross-bred 
buffalo under two production systems in the Amazonian region of Brazil. Italian Journal of Animal 
Science 6: 1075-1078.
Boostan A, Moradi Shahrbabak M, Nejati-Javaremi, A, 2010. A Comparison of Different Functions for the 
Description of Lactation Curve in Different Periods of Lactation of Holstein Cows using Test Day 
Records. Iranian Journal of Animal Science 41: 73-80. 
Brody S, Ragsdale AC and Turner CW, 1923. The rate of decline of milk secretion with the advance of the 
period of lactation. The Journal of General Physiology 5: 441-444.
28 فیاضی ، نیسی و ... نشریه پژوهشهای علوم دامی/ جلد 33 شماره /2 سال1402
Chegini A, Shadparvar AA and Ghavi Hossein-Zadeh N, 2015. Genetic parameter estimates for lactation 
curve parameters, milk yield, age at first calving, calving interval and somatic cell count in Holstein 
cows. Iranian Journal of Applied Animal Science 5: 61-68.
Collins-Lusweti E, 1991. Lactation curves of Holstein-Friesian and Jersey cows in Zimbabwe. South 
African. Journal of Animal Science 21: 11-15.
Dijkstra J, France J, Dhanoa MS, Maas JA, Hanigan MD, Rook AJ and Beever DE, 1997. A model to 
describe growth patterns of the mammary gland during pregnancy and lactation. Journal of Dairy 
Science 80: 2340-2354.
Dongre VB and Gandhi RS, 2013. Prediction of first lactation milk in Sahiwal cattle using statistical 
models. Tamil Nadu Veterinary and Animal Sciences 9: 202-206.
Farhangfar H, Nezamdoust S, Montazer M, Asgari M, 2018. Genetic analysis of Pollott-Gootwine 
mechanistic model parameters for lactation curve of Iranian dairy cows. Journal of Animal Science 
Research 28: 17-46.
Farhangfar H, Rowlinson P, 2007. Genetic analysis of Wood’s lactation curve for Iranian Holstein heifers. 
Journal of Biological Science 7:127-135.
Ferris TA, Mao I L and Anderson CR, 1985. Selecting for lactation curve and milk yield in dairy cattle. 
Journal of Dairy Science 68: 1438-1448.
Grossman M and Koops WJ, 1988. Multiphasic analysis of lactation curves in dairy cattle. Journal of Dairy 
Science 71: 1598-1608.
Kazemi F, Hassani S, Samadi F, Ahani Azari M, Saghi D, 2018. Genetic analysis of milk yield by fixed and 
random regression models in Shirvan Kurdi sheep. Journal of Animal Science Research 28: 127-141.
Macciotta NPP, Dimauro C, Catillo G, Coletta A, and Cappio-Borlino A, 2006. Factors affecting individual 
lactation curve shape in Italian river buffaloes. Livestock Science 104: 33-37.
Macciotta NPP, Vicario D and Cappio-Borlino A, 2005. Detection of different shapes of lactation curve for 
milk yield in dairy cattle by empirical mathematical models. Journal of Dairy Science 88: 1178-1191.
Mohanty BS, Verma MR, Sharma VB and Roy PK, 2017. Comparative study of lactation curve models in 
crossbred dairy cows. International Journal of Agricultural and Statistical. 13: 545-551.
Nelder JA, 1966. Inverse polynomials, a useful group of multi-factor response functions. Biometrics, 128-
141.
Rook AJ, France J and Dhanoa MS, 1993. On the mathematical description of lactation curves. The Journal 
of Agricultural Science 121:97-102.
Sahoo SK, Singh A, Shivahre PR, Singh M, Dash S, and Dash SK, 2014. Prediction of fortnightly test-day 
milk yields using four different lactation curve models in Indian Murrah Buffalo. Advances in Animal 
and Veterinary Sciences 2:647-651.
Seahin A, Ulutaş Z, Arda Y, Yüksel, A, and Serdar G, 2015. Lactation curve and persistency of Anatolian 
buffaloes. Italian Journal of Animal Science 14: 149-157.
Soysal MI, Gurcan EK and Aksel M, 2016. The comparison of lactation curve with different models in 
Italian origined water buffalo herd raised in Istanbul province of Turkiye. Journal of Tekirdag 
Agricultural Faculty 13:139-144.
Taheri- Dezfuli B, Babaei M, Kardooni A, 2018. Fitting Milk Curve and its Compounds for Khuzestani 
Buffaloes using Five Different Functions. Research on Animal Production 9:113-123.
Torshizi ME, Aslamenejad AA, Nassiri MR and Farhangfar H, 2011. Comparison and evaluation of 
mathematical lactation curve functions of Iranian primiparous Holsteins. South African Journal of Animal 
Science 41: 104-115.
Val-Arreola D, Kebreab E, Dijkstra J and France J, 2004. Study of the lactation curve in dairy cattle on farms 
in central Mexico. Journal of dairy science 87: 3789-3799.
Wilmink JBM, 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of 
lactation. Livestock Production Science 16: 335-348.
Wood PDP, 1967. Algebraic model of the lactation curve in cattle. Nature 216: 164-165.