Ahbara A, Bahbahani H, Almathen F, Al Abri M, Agoub MO, Abeba A, Kebede A, Musa HH, Mastrangelo S, Pilla F, Ciani E, Hanotte O and Mwacharo JM, 2019. Genome-Wide Variation, Candidate Regions and Genes Associated With Fat Deposition and Tail Morphology in Ethiopian Indigenous Sheep. Frontiers in Genetics 9:699.
Bakhtiarizadeh MR, Mirzaei S, Norouzi M, Sheybani N and Sadi MSV, 2020. Identification of Gene Modules and Hub Genes Involved in Mastitis Development Using a Systems Biology Approach. Frontiers in Genetics 11:722.
Bliss SP, Navratil AM, Xie J and Roberson MS, 2010. GnRH signaling, the gonadotrope and endocrine control of fertility. Frontiers in Neuroendocrinology 31: 322–340.
Chatterjee SJ, Halaoui R, Deagle RC, Rejon C and McCaffrey L, 2019. Numb regulates cell tension required for mammary duct elongation. Biology Open 8:42341.
Dysin AP, Barkova OY and Pozovnikova MV, 2021. The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 4:78.
Esmaeili-Fard SM, Gholizadeh M, Hafezian SH and Abdollahi-Arpanahi R, .2021. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep. PLoS ONE 16(1): e0244408.
Gao X, Yao X, Li X, Liang Y, Liu Z, Wang Z, Li K, Li Y, Zhang G and Wang F, 2021. Roles of WNT6 in Sheep Endometrial Epithelial Cell Cycle Progression and Uterine Glands Organogenesis. Veterinary Sciences 12:316.
Honarvar M, Sadeghi M, Moradi-Shahrebabak H, Behzadi SH, Mohammadi H. and Lavaf A, 2012. Study of Polymorphisms in the 5´ Flanking Region of the Ovine IGF-I Gene in Zel Sheep. World Applied Sciences Journal 16 (5): 726-728.
Huang S, He Y and Ye S, 2018. Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array. Journal of Applied Genetics 59: 335-344.
Khaltabadi Farahani AH, Mohammadi H and Moradi MH, 2020. Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production 22(3): 325-335.
Kim SC, Jang HC, Lee SD, Jung HJ, Park JC, Lee SH, Kim TH and Choi BH, 2014. Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs. Journal of Animal Science and Technology 56:12.
Li Y, Pu L, Shi L, Gao H, Zhang P, Wang L and Zhao F, 2021. Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies. Animals (Basel) 3:806.
Liu Z, Li H, Zhong Z, Jiang S, 2022. A Whole Genome Sequencing-Based Genome-Wide Association Study Reveals the Potential Associations of Teat Number in Qingping Pigs. Animals (Basel). 12(9): 1057.
Marete A, Lund MS, Boichard D and Ramayo-Caldas Y, 2018. A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS One 7:e0199931.
Marques DBD, Bastiaansen JWM, Broekhuijse MLWJ, Lopes MS, Knol EF, Harlizius B, Guimarães SEF, Silva FF and Lopes PS, 2018. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genetics Selection Evolution 50(1): 40.
Mohammadi H, Rafat SA, Moradi Shahrbabak H, Shodja J and Moradi MH, 2020. Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies 8(2): 45-55.
Nazar M, Lu X, Abdalla IM, Ullah N, Fan Y, Chen Z, Arbab AAI, Mao Y and Yang Z, 2021. Genome-Wide Association Study Candidate Genes on Mammary System-Related Teat-Shape Conformation Traits in Chinese Holstein Cattle. Genes (Basel). 12:2020.
Nusse R and Clevers H, 2017. Wnt/b-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 16: 985-999.
Peng WF, Xu SS, Ren X, Lv FH, Xie XL, Zhao YX, Zhang M, Shen ZQ, Ren YL, Gao L, Shen M, Kantanen J and Li MH, 2017. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Animal Genetics 5: 570-579.
Peñagaricano F, Weigel KA, Rosa GJ, Khatib H, 2013. Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers in Genetics 3:307-314.
Pértille F, Moreira GC and Zanella R, 2017. Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Scientific Reports 7:41748.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR and Bender D, 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics 81: 559-575.
Salehian-Dehkordi H, Xu YX, Xu SS, Li X, Luo LY, Liu YJ, Wang DF, Cao YH, Shen M, Gao L, Chen ZH, Glessner JT, Lenstra JA, Esmailizadeh A, Li MH, Lv FH, 2021. Genome-Wide Detection of Copy Number Variations and Their Association with Distinct Phenotypes in the World's Sheep. Frontiers in genetics 12: 670582.
Smołucha G, Gurgul A, Jasielczuk I, Kawęcka A and Miksza-Cybulska A, 2021. A genome-wide association study for prolificacy in three Polish sheep breeds. Journal of Applied Genetics 2: 323-326.
Srikanth K, Lee SH, Chung KY, Park JE, Jang GW, Park MR, Kim NY, Kim TH, Chai HH, Park WC and Lim D. 2020. A Gene-Set Enrichment and Protein-Protein Interaction Network-Based GWAS with Regulatory SNPs Identifies Candidate Genes and Pathways Associated with Carcass Traits in Hanwoo Cattle. Genes (Basel)11(3):316.
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J and Fortes MRS, 2021. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 5:768.
Wang XC, Maltecca R, Tal-Stein EL and Khatib H, 2008. Association of bovine fibroblast growth factor2 (FGF2) gene with milk fat and productive life: an example of the ability of the candidate pathway strategy to identify quantitative trait genes. Journal of Dairy Science 91: 2475-2480.
Xu SS, Gao L, Xie XL, Ren YL, Shen ZQ, Wang F, Shen M, Eyϸórsdóttir E, Hallsson JH, Kiseleva T, Kantanen J and Li MH, 2018. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds. Frontiers in Genetics 9:118.
Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H and Wang X, 2018. Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 19: 1–14.
Zhao Y, Pu Y, Liang B, Bai T, Liu Y, Jiang L and Ma Y, 2022. A study using single-locus and multi-locus genome-wide association study to identify genes associated with teat number in Hu sheep. Animal Genetics 2: 203-211.
Zhou X and Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44:821.
Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, Wang X, Quan J, Zheng E, Cai G, Huang W, Yang J, Wu Z, 2020. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics 21(1): 344.