تأثیر افزودن سطوح مختلف ال- ترئونین بر عملکرد رشد، صفات لاشه و ریخت‌شناسی ژژونوم جوجه‌های گوشتی در شرایط پرورش متراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشگاه ایلام

2 بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

چکیده

زمینه مطالعاتی: افزایش تراکم موجب بروز تنش در گله می‌شود و اسید آمینه ترئونین ممکن است با بهبود عملکرد و تأثیر بر شرایط دستگاه گوارش موجب کاهش اثرات تنش شود. هدف: به منظور بررسی تأثیر افزودن سطوح مختلف اسید آمینه ترئونین بر عملکرد، کیفیت لاشه و ریخت‌شناسی روده کوچک جوجه‌های گوشتی در شرایط تنش پرورش متراکم این آزمایش با استفاده از 495 قطعه جوجه خروس گوشتی سویه راس-308 در قالب طرح کاملاً تصادفی با 4 تیمار و 5 تکرار انجام شد. روش کار: تیمارهای آزمایشی عبارت بودند از: 1- شاهد (10 قطعه جوجه در هر مترمربع) دریافت کننده جیره پایه بر اساس ذرت و کنجاله سویا، 2- پرورش متراکم (15 قطعه در هر مترمربع) دریافت کننده جیره پایه، 3) پرورش متراکم دریافت کننده جیره حاوی 10 درصد اسید آمینه ترئونین (110 درصد نیاز سویه راس-308) و 4) پرورش متراکم دریافت کننده جیره حاوی 20 درصد اسید آمینه ترئونین (120 درصد نیاز سویه راس-308). عملکرد، یکنواختی گله و شکل توزیع داده‌ها، میزان تلفات، شاخص تولید اروپایی، اجزاء لاشه، چربی و پروتئین ران و سینه و ریخت‌شناسی ژئوژنوم اندازه‌گیری شد. نتایج: اعمال تراکم موجب کاهش وزن بدن، خوراک مصرفی و ضریب تبدیل خوراک نسبت به گروه شاهد شد (01/0 >P ). اعمال تراکم منجر به کاهش درصد جوجه‌های سنگین وزن در هر پن شد و چولگی منحنی توزیع جوجه‌ها در داخل هر تیمار منفی بود و بیشتر جوجه‌ها در محدوده وزنی کمتر از میانگین بودند. درصد تلفات، درصد ران و سینه و ریخت‌شناسی روده کوچک جوجه­های گوشتی تحت تأثیر تیمارهای آزمایشی قرار نگرفت (05/0 >P ). افزودن 10 درصد مکمل ترئونین سبب افزایش شاخص تولید اروپایی، بازده لاشه و پروتئین سینه شد (05/0 >P ). نتیجه‌گیری نهایی: اعمال تراکم موجب کاهش عملکرد رشد جوجه‌های گوشتی شد و مکمل ترئونین نیز قادر به جبران کاهش عملکرد رشد جوجه‌های گوشتی تحت تنش تراکم نبود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of L- threonine supplemntation on growth performance, carcass traits and jejunum morphology of chickens reared under high stocking density

نویسندگان [English]

  • K sookhtehzari 1
  • A Khatibjoo 1
  • H Jafari 2
  • M Akbari 1
  • K Taherpour 1
چکیده [English]

Introduction: Stocking density is an important issue in the poultry industry, because it is highly related to the outcome of poultry productivity as well as animal welfare issues. Stocking density for broiler chickens is defined as the number of birds or the total live weight of birds in a fixed space (Estevez 2007). Therefore, high stocking density increases profitability due to a higher production of chicken meat per space (Puron et al. 1995). However, high stocking density was reported to decrease the absorptive capacity of broiler chickens by impairing villus structures of small intestine (Shakeri et al. 2014; Li et al. 2017). Regardless, physiological alterations in the gastrointestinal tract (GIT) of broiler chickens due to high stocking density in relation to productive performance have not been examined. Meanwhile, it is indicated that with increasing in stocking density, the productivity decreases because of increasing in  health problems and decreasing in the performance of broiler chickens (Estevez, 2007). Birds cannot synthesize threonine (Thr); therefore, it is one of essential amino acids. Threonine participates in protein synthesis and its catabolism produces many products important in metabolism. Threonine is considered as the third limiting amino acid after methionine and lysine for broiler chicks (Kidd et al. 1999; Ayasan and Okan 2006; Baylan et al. 2006; Ayasan et al. 2009). Kidd (2000) reported that threonine deficiency resulted in decreasing utilization of methionine + cyctein and lysine. In addition, threonine incorporated in a high concentration in γ-globulin, it affects the immune function (Smith and Greene 1947; Crumpton and Wilkinson 1963; Tenenhouse and Deutsch 1966; Azzam et al. 2011a, b). Recently, Houshmand et al. (2012) observed significant interactions between protein level and stocking density for body weight gain and final body weight. Therefore, the aim of our study was to investigate the effects of dietary threonine levels on performance and meat quality of broilers chickens under different stocking density condition.
Materials and methods: For this reason, 495 male Ross-308 broiler chickens from 1 to 42 days of age were used based on a completely randomized design with 4 treatments and 5 replicates. Two different stocking densities were achieved by raising a different number of broiler chickens per pen with identical floor size (1.2 m ×1.5 m). Two different stocking densities included 10 birds/m2 (18 birds/pen) or 15 birds/m2 (27 birds/pen). The dietary treatments consisted of: 1) basal diet based on corn-soybean meal as control group that containing 0.79, 0.69 and 0.6 percent standardized ileal digestible Thr in starter, grower and finisher periods, respectively; 2) high stocking density group fed basal diet; 3) high stocking density group fed basal diet supplemented with 10 percent L-Thr higher than control group (diets containing 0.88, 0.76, and 0.66 percent standardized ileal digestible Thr in starter, grower and finisher periods, respectively); and 4) high stocking density group fed basal diet supplemented with 20 percent L-Thr higher than control group (diets containing 0.96, 0.83, and 0.72 percent standardized ileal digestible Thr in starter, grower and finisher periods, respectively). The bell feeder (56 cm diameter and 172.6 cm circompherence) were used and feeder space for control and stocking density groups were 9.5 and 6.4 cm per bird, respectively. The diets were formulized to meet the requirements of broilers as established by the Ross 308 broiler nutrition specification in starter (1-10d), grower (11-24d) and finisher (25-42d). The birds were reared under controlled conditions for temperature, ventilation, and lighting based on Ross-308 management guide booklet recommendations. The broiler chickens' diets were formulated based on standardized ileal digestible amino acids recommendations (Hoehler et al. 2005) and other requirements were obtained from Ross-308 nutrition specification. Broiler chicken performance (feed intake, body weight gain, feed conversion efficiency, and European production efficiency factor), distribution and shape of distribution parameters, carcass parameters, and meat fat and protein percentage, and jejunum morphology were measured. Data were evaluated for variance homogeneity by Minitab 18 version (Minitab 2019 LLC) software and analyzed using GLM procedure (SAS 2004) based on a completely randomized design with 4 treatments and 5 replicates in each treatment. The mortality data were subjected to arc sine transformation prior to analysis, and then analyzed using GLM procedure (SAS 2004).
Results and discussion: The results showed that high stocking density significantly decreased feed intake, body weight, feed conversion ratio, and carcass yield of broilers, while Thr supplementation could not ameliorate the negative effects of high stocking density which were in agreement with Azzam et al. 2011a, b. European production efficiency factor (EPEF), breast, thigh and abdominal fat percentage, intestinal morphology, and breast fat and thigh meat protein percentage were not affected by treatments. Maximum weight of the birds was decreased by increasing in stocking density, but the minimum weight was not affected by treatments. The skewness was negative for high stocking density groups, which means that body weight of the most of the broiler chickens in these groups were lower than mean of the group.
Conclusion: In conclusion, high stocking density lowered broiler chickens' performance. Although final body weight per m2 in high stocking density treatments were higher than control group, but high stocking density led to decrease in the maximum weight of the birds and had a negative skewness in the distribution of the birds. On the other hand, threonine supplementation could not compensate the negative effects of stocking density, though 10 percent Thr supplementation only increased breast meat protein as compared with control group. It is suggested that Thr supplementation is not a good treatment for improving the bird’s performance under high stocking density. 

Azzam MM and Gogary MRE, 2015. Effects of dietary threonine levels and stocking density on the performance, metabolic status and immunity of broiler chickens. Asian Journal of Animal and Veterinary Advances 10, 215- 225.
Awad W, Ghareeb K and Böhm J. 2008. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. International Journal of Molecular Science 9, 2205-2216.
Chen YP, Cheng YF, Li XH, Yang WL, Wen C, Zhuang S and Zhou YM, 2016. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poultry Science 96, 405-413.
De Los Santos FS, Donoghue A, Farnell M, Huff G, Huff W and Donoghue D. 2007. Gastrointestinal maturation is accelerated in turkey poults supplemented with a mannan-oligosaccharide yeast extract (Alphamune). Poultry Science 86, 921-930.
Denli M, Okan F and Celik K, 2003. Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield. Journal of Nutrition 2(2), 89-91.
Donaldson W, 1985. Lipogenesis and body fat in chicks: Effects of calorie-protein ratio and dietary fat. Poultry Science 64, 1199.
Dozier WA, Moran ETJR and Kidd WT, 2001. Male and female responses to low and adequate dietary threonine on nitrogen and energy balance. Poultry Science 80, 926.
Eftekhari A, Rezaeipour V and Abdullahpour R, 2015. Effects of acidified drinking water on performance, carcass, immune response, jejunum morphology, and microbiota activity of broiler chickens fed diets containing graded levels of threonine. Livestock Science 180, 158-163.
El-Deek AA and Al-Harthi MA, 2004. Responses of modern broiler chicks to stocking density, green tea, commercial multi enzymes and their interactions on productive performance, carcass characteristics, liver composition and plasma constituents. International Journal of Poultry Science 3(10), 635-645.
Feddes JJ, Emmanuel REJ and Zuidhof MJ, 2002. Broiler performance, body weight variance, feed and water intake and carcass quality at different stocking densities. Poultry Science 81, 774-779.
Feldsine, P, Abeyta C and Andrews WH, 2002. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. Journal of AOAC International 85(5), 1187-1200.
Folch J, Lees M and Stanley GS, 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry 226(1), 497-509.
Furuse M and Yokota H, 1985. Effect of the gut microflora on chick growth and utilisation of protein and energy at different concentrations of dietary protein. Poultry Science 26, 97-104.
HanY, Suzuki H, Parsons CM and Baker DH, 1992. Amino acid fortification of a low-protein corn and soybean meal diet for chicks. Poultry Science 71(7), 1168-1178.
HassanAbadi A and Poorraberi MM, 2009. Effect of stocking density on broiler chicken performance, blood metabolites and carcass index. Animal Production 1(2), 138-155. (In Persian)
Hoehler D, Lemme A, Ravindran V, Bryden W and Rostagno H, 2005. Feed formulation in broiler chickens based on standardized ileal amino acid digestibility. Pages 78-91 in Proc. Proceedings of the 3rd Mid-Atlantic Nutrition Conference.
Hosseinpoor A, HassanAbadi A, Shahir MH and Hajati H, 2012. Effect of crude protein levels and threonine supplemetation on broiler chicken performance, carcass parameters and immune response. Animal Science Research 4(3), 191-198.
Jahandoost-Ardin S, HassanAbadi A and Nassirimoghadam H, 2014. Effect of metabolisable energy and stocking density on broiler chicken performance. 6th Animal science conference, Tabriz, Iran, 1-5.
Khan AR, Nawaz H and Zahoor I, 2006. Effect of different levels of digestible threonine on growth performance of broiler chicks. Journal of Animal and Poultry Science 16(1-2), 8.
Kidd MT, 2002. The importance of meeting dietary threonine needs in broilers, Amino News 3, 15-22.
Kidd, MT and Kerr BJ, 1997. Threonine responses in commercial broilers at 30 to 42 days. Journal of Applied Poultry Research 6, 362-367.
Mack S, Bercovici D, De Groote G, Leclerq B, Lippens M, Pack M, Schutte JB and Van Cauwenberghe S, 1999. Ideal amino acid profile and dietary lysine specifications for broiler chickens of 20 to 40 days of age. British Poultry Science 40, 257-265.
Maroufyan E, Kasim A and Hashemi SR, 2010. Change in Growth Performance and Liver Function Enzymes of Broiler Chickens Challenged with Infectious Bursal Disease Virus to Dietary Supplementation of Methionine and Threonine. American Journal of Animal and Veterinary Sciences 5, (1), 20.
Martrenchar A, Huonnic DC, Boilletot E and Morisse JP, 2000. Influence of stocking density, artificial dusk and group size on the perching behavior of broilers. Poultry Science 41, 125-130.
MohammadiGheisar M, Foroudi F and Ghazikhani A, 2011. Effect of Using L–Threonine and Reducing Dietary Levels of Crude Protein on Egg Production in Layers. Iranian Journal of Applied Animal Science 1(1): 65.
Qaid MI, Albatshan H, Shafey T, Hussein E and Abudabos AM, 2016. Effect of Stocking Density on the Performance and Immunity of 1- to 14-d- Old Broiler Chicks. Brazilian Journal of Poultry Science 18(4), 683-692.
Rasheed MF, Rashid MA, Saima A, Mahmud MS, Yousaf MS and Malik ML, 2018. Digestible threonine and its effects on growth performance, gut morphology and carcass characteristics in broiler Japanese quails (Coturnix japonica). South African Journal of Animal Science 48 (4), 425-733.
Rosales A, Galicia L, Oviedo E, Islas C, Palacios-Rojas N. 2011. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. Journal of agricultural and food chemistry 59 (20), 10781-10786.
Schaart MV, Schierbeek H and Vanderschoor SR, 2005. Threonine utilization is high in the intestine of piglet. Journal of Nutition 135 (4), 765- 770.
Selvam R, Saravanakumar M,  Suresh S and Sureshbabu G, 2017. Stocking Density on the Performance and Stress Parameters of Broilers. Brazilian Journal of Poultry Science 19(4), 1806-9061.
Shan AS, Sterling KG, Pesti GM, Bakalli RI, Driver JP and  Atencio T, 2002. The influence of temperature on the threonine requirement of young broiler chicks. Poultry Science Association91st Annual Meeting Abstracts.August 11-14, Newark, Delaware, pp: 73
Zaefarian F, Zaghari M and Shivazad M, 2008. The threonine  requirements  and  its effects  on growth  performance and gut  morphology  of broiler  chicken  fed  different  levels of  protein. International Journal of Poultry Science 7(12), 1207-1215.
Zarrin-Kavyani Sh, Khatibjoo A, Fattahnia F and Taherpour K, 2018. Effect of threonine and potassium carbonate supplementation on performance, immune response and bone parameters of broiler chickens. Journal of Applied Animal Research 46(1), 1329–1335.