برآورد پارامترها و روندهای ژنتیکی و فنوتیپی صفات تولید مثلی گاوهای ماده و نرخ باروری گاوهای نر هلشتاین ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

2 گروه علوم دامی دانشگاه تبریز

3 دانشگاه تهران-پردیس ابوریحان

چکیده

فرآیند تولیدمثل برای پایداری اقتصادی صنعت پرورش گاو شیری بسیار حائز اهمیت است. هدف از این مطالعه، ارزیابی ژنتیکی صفات تولیدمثلی گاوهای شیری و نرخ باروری گاوهای نر بود. از اطلاعات مربوط به صفات تولیدمثلی برای تلسیه‌ها و گاوهای شکم اول تا سوم (در دامنه‌ی سنی 21 تا 46 ماه، 30 تا 67 ماه و 42 تا 80 ماه، به ترتیب برای شکم اول، دوم و سوم) در بین سال‌های 1370 تا 1396 موجود در مرکز اصلاح نژاد و بهبود تولیدات دامی کشور استفاده شد. همچنین اطلاعات مربوط به نرخ باروری گاوهای نر از سایت Council of Dairy Cattle Breeding استخراج شد. تعداد حیوانات موجود در شجره 3452730 بود. صفات مورد بررسی شامل: نرخ باروری گاوهای نر، سن در زمان اولین تلقیح، سن در زمان اولین زایش، روزهای باز، فاصله گوساله‌زایی، طول دوره آبستنی، نرخ باروری ماده، فاصله بین اولین تا آخرین تلقیح منجر به آبستنی، روزهای بین زایش تا اولین تلقیح و تعداد تلقیح به ازای آبستنی بود. انتخاب معادلات مدل و اثرات ثابت با استفاده از رویه GLM در نرم‌افزار SAS وآنالیز‌های ژنتیکی با استفاده از مدل حیوانی انجام شد. کمترین مقدار وراثت‌پذیری برای صفت فاصله بین اولین تا آخرین تلقیح منجر به آبستنی- تلیسه (002/0) و بیشترین مقدار برای نرخ باروری گاوهای نر (30/0) برآورد گردید. همبستگی‌های ژنتیکی افزایشی، در محدوده 56/0- (بین صفات طول دوره آبستنی با سن در زمان اولین زایش) تا 83/0 (بین صفات فاصله بین اولین تا آخرین تلقیح منجر به آبستنی با تعداد تلقیح به ازای هر آبستنی) بدست آمد. روند ژنتیکی منفی برای صفات نرخ باروری گاو نر (49/3- %) سن در زمان اولین تلقیح (03/4- روز/سال)، سن در زمان اولین زایش (66/2- روز/سال)، طول دوره آبستنی (07/0- روز/سال) و نرخ باروری ماده (83/0- روز/سال) معنی‌دار بدست آمد. روند فنوتیپی برای صفات فاصله گوساله‌زایی، روزهای باز، فاصله بین اولین تا آخرین تلقیح منجر به آبستنی و روزهای بین زایش تا اولین تلقیح نامطلوب بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of genetic and phenotypic parameters and trends of female fertility traits of cows and sire conception rate in Iranian Holstein

نویسندگان [English]

  • Ali Mohammadi 1
  • Sadegh Alijani 2
  • Seyed Abbas Rafat 2
  • Rostam Abdollahi-Arpanahi 3
1 Department of Animal Science, Faculty of Agriculture, University of Tabriz, Iran
2 Department of Animal Science, Faculty of Agriculture, University of Tabriz, Iran
3 Department of Animal Science, University College of Abureyhan, University Of Tehran, Iran
چکیده [English]

Abstract
Introduction: Fertility is considered an important economic trait in cattle, yet despite its importance, reproductive efficiency of dairy cattle has decreased dramatically in the past decades and is of increasing concern to farmers and the dairy industry (Ghiasi et al. 2011; Pryce et al. 2010). The decline in the reproductive efficiency of dairy cattle has become a challenging problem worldwide. Genetic response for fertility traits is expected to be small due to low heritabilities as shown in many studies. In the past decades, more attention has been placed on milk production in selection programs worldwide, which has caused a decline in female fertility due to the antagonistic genetic relationship between milk production and fertility (Pryce et al. 2010; Toghiani 2012). Therefore, it is necessary to include fertility traits in the breeding programs for improving fertility or stopping its downward genetic trend (Penagaricano et al. 2012). It is well documented that bull fertility is influenced by genetic factors. Semen production traits, such as volume and sperm concentration, were found to have moderate heritabilities (from 0.15 to 0.30), whereas some of the semen quality traits, such as motility and percentage of abnormal sperm, had moderate to high heritabilities (close to 0.60) (Rezende et al. 2018). The objective of this study was to assess genetic parameters for fertility traits in Holstein dairy cows and sire conception rate (SCR) a new phenotypic evaluation of bull fertility.
Materials and method: In this study information's related to heifers and cows 1 to 3 parity, 1992 to 2018, by the National Animal Breeding center and promotion of Animal Products of Iran and sire conception rate (SCR) 2008 to 2018, a phenotypic evaluation of bull fertility, has been provided to dairy producers the Council of Dairy Cattle Breeding (CDCB) were used. Traits included: sire conception rate (SCR), age at first service (AFS), age at first calving (AFC), days open (DO), calving interval (CI), gestation length (GL), Pregnancy rate (PR), Interval between first and last
insemination (IFL), Days from calving to first service (DFS) and number of services per conception (NS). Edited data included the following: SCR between 7.6 % to -16 %, AFS between 320 and 900 days, AFC between 630 to 1350 days, CI between 300 and 700 days, IFL less than 290, GL between 260 and 290 days, DFS between 20 and 300 days, DO between 40 and 350 days, PR between -28 and 55 and NS between 1 and 10. Select the model equations and fixed effects were optimized using GLM procedure in SAS package. Subsequently, the multi-variate animal model analyses was carried out in order to estimate of direct additive genetic and phenotypic correlations between fertility traits. Estimation of genetic parameters using animal model in REML methodology was done by REMLF90 program.
Results and Discussion: Heritability estimates for all fertility traits were low, minimum heritability were estimated for IFL trait by heifers (0.002) and maximum amount for SCR trait (0.303). Heritability were estimated for other fertility traits 0.033, 0.005, 0.052, 0.048, 0.085, 0.108, 0.095, 0.059, 0.031, 0.025, 0.023, 0.017, 0.018, 0.013, 0.009, 0.013, 0.032, 0.028 and 0.018 for AFS, AFC, CI, OD, PR, GL_H, GL, DFS_1, DFS_2, DFS_3, IFL_1, IFL_2, IFL_3, IFL_123, NS_H, NS_1, NS_2 and NS_3, respectively. These estimates are in agreement with the results obtained by Ghiasi et al. (2011) and Rahbar et al. (2016) in Holstein cows. Heritability estimates obtained in this study were larger than the ones obtained by Toghiani Pozveh et al. (2009) for CI, DFS and DO in the previous study of Iranian Holsteins. The heritability estimates obtained for interval traits (DO, CI, and GL) were higher than those obtained for categorical (NS) or binary traits. However interval traits may be affected by management decisions such as the length of the voluntary waiting period or estrus synchronization applied in some farms (Ghiasi et al. 2011). In general, negative and moderate additive genetic and phenotypic correlations estimates were obtained between fertility traits. Estimated additive genetic correlations in the range of -0.56 (between GL and AFC) and 0.83 (between IFL and NS). However, estimated phenotypic correlations in the range of -0.80 (between PR and OD) and 0.85 (between GL and OD). The first one is formed by the traits that measure overall fertility of the cow (i.e. CI, OD and PR) which can be obtained directly from calving dates. In particular, OD and PR showed additive genetic (-0.39) and phenotypic (-0.80) correlation estimates which indicates that these two traits are genetically the same as expected because PR is a linear function of OD. The same results were found by VanRaden et al. (2004) and Ghiasi et al. (2011) in Holstein cattle. The mean breeding values were estimated -0.31 to 0.38, -4.14 to -3.34, -6.70 to -5.64, -0.0435 to -0.0064, -2.20 to -1.93, 9.16 to 10.73, 8.72 to 10.15, 3.29 to 4.21 and 4.34 to 5.84 for SCR, AFC, AFS, GL, PR, CI, OD, IFL DFS, respectively. However, the mean phenotypic values was positive, except SCR (range -0.62 to 0.66). These results were in agreement with reported Aghajari et al. (2015); Ansari-Lari et al. (2009) and Shirmoradi et al. (2010). Were estimated negative genetic trend for SCR (-2.22), AFS (-4.02 %), AFC (-2.66 %), GL (-0.07) and PR (-0.83) traits. Subsequently, for CI, DO, IFL and DFS traits, positive phenotypic trends were obtained. These estimated genetic and phenotypic trend agreed with other reports (Faraji-Arough et al. 2011; Rahbar et al. 2016).
Conclusion: Genetic parameters (heritabilities and genetic correlations) have been estimated for fertility traits in heifers and cows and fertility bulls. The results of this study indicated that breeding programs have paid little attention to reproductive traits in Iranian Holstein cows, and therefore it is recommended to pay more attention to these traits in order to improve the performance of Holstein cows. According to the results suggest that the genetic prediction of dairy bull fertility is feasible. This could have a positive effect on the dairy industry, for example, the early culling of bull calves with very low SCR predictions.

کلیدواژه‌ها [English]

  • Fertility traits
  • Sire conception rate
  • Heritability
  • Genetic trend
Aliloo H, Pryce JE, Oscar Gonzalez-Recio O, Cocks B and Hayes B, 2015. Validation of markers with non-additive effects on milk yield and fertility in Holstein and Jersey cows. BMC Genetics 16:77–89.
Ansari-Lari M, Kafi M, Sokhtanlo M, Nategh Ahmadi MH, 2010. Reproductive performance of Holstein dairy cows in Iran. Tropical Animal Health Production 42: 1277–1283.
Ansari-Lari M, Rezagholi M and Reiszadeh M, 2009. Trends in calving age and calving intervals for Iranian Holstein in Fars province, Southern Iran. Tropical Animal Health Production 41: 1283–1288.
Barbat A, Bonaiti B, Guillaume F, Druet T, Colleau JJ and Boichard D, 2005. Overview of phenotypic fertility results after artificial insemination in the three main French dairy cattle breeds. Rencontre Recherche Ruminants 12: 137–140.
Biffani S, Marusi M, Biscarini F and Canadesi F, 2005.  Developing a Genetic Evaluation for fertility using angularity and milk yield as correlated traits. INTERBULL Bulletins 33: 63–66.
Deljoo-Isaloo H A and Pasha-Eskandari-Nasab M, 2012. The estimation genetic and environmental parameters and genetic and phenotype and genetic trend for reproduction traits of Holstein cattle was Khoramdare culture technology. Journal of Animal Science 92: 52–58.
Eghbalsaied S, 2011. Estimation of genetic parameters for 13 female fertility indices in Holstein dairy cows. Tropical Animal Health Production 43: 811–816.
Faraji-Arough H, Aslaminjad AA and Farhangfar H, 2011. Estimation of genetic parameter and trends for age at first calving and calving interval in Iranian Holstein cattle. Journal of Research in Agricultural 7: 79–87.
Fatehi J and Schaeffer LR, 2003. Data management for the fertility project. Report to the Technical Committee of the Canadian Genetic Evaluation. http://cgil.uoguelph.ca/dcbgc/Agenda0303/FatehiReport.pdf
Fiedlerova M, Rehak D, Vacek M, Volek J, Fiedler J, Simecek P, Masata O and Jilek F, 2008. Analysis of non-genetic factors affecting calving difficulty in the Czech Holstein population. Czech Journal of Animal Science 53: 284–291.
Ghiasi H, Pakdel A, Nejati-Javaremi A, Mehrabani-Yeganeh H, Honarvar M, Gonzalez-Recio O, Jesus Carabano M and Alenda R, 2011. Genetic variance components for female fertility in Iranian Holstein cows. Livestock Science 139: 277–280.
González-Recio O and Alenda R, 2005. Genetic parameters for female fertility traits and a fertility index in Spanish dairy cattle. Journal of Dairy Science 88: 3282–3289.
Gredler B, Fürst C and Sölkner J, 2007. Analysis of new fertility traits for the joint genetic evaluation in Austria and Germany. Interbull Bulletin 37: 152–155.
Hammami H, Rekik B, Soyeurt H, Ben Gara A and Gengler N, 2008. Genetic Parameters for Tunisian Holsteins Using a Test-Day Random Regression Model. Journal Dairy Science 91: 2118–2126.
Hare E and Norman H D, 2006. Trends in calving ages and calving intervals for dairy cattle breeds in the United States. Journal of Dairy Science 89: 365–370.
Jamrozik J, Fatehi J, Kistemaker GJ, Schaeffer LR, 2005. Estimates of genetic parameters for Canadian Holstein female reproduction traits. Journal of Dairy Science 88: 2199–2208.
Kadermideen HN, 2004. Genetic correlations among body condition score, somatic cell score, milk production, fertility and conformation traits in dairy cows. Animal Science 79: 191–201.
Kuhn M, Hutchison J and Norman H, 2008. Modeling nuisance variables for prediction of service sire fertility. Journal of Dairy Science 91: 2823–35.
Miglior F, Muir BL and Van Doormaal BJ, 2005. Selection indices in Holstein cattle of various countries. Journal of Dairy Science 88: 1255–1263.
Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH, 2002. BLUPF90 and related programs (BGF90), Proc, 7th WCGALPP, Montpellier, France. CD-ROM Communication 28: 07. 
Mohammadi A, Alijani S and Daghighkia H, 2014. Comparison of different polynomial functions in random regression model for milk production traits of Iranian Holstein dairy Cattle. Annals of Animal Science 14: 55–68.
Mohammadi A, Alijani S, Rafat SA and Abdollahi-Arpanahi R, 2020. Genome-wide association study and pathway analysis for female fertility traits in Iranian Holstein cattle. Annals of Animal Science 20(3): 825–851. 
 Mohammadi A, Alijani S, Rafat SA and Taghizadeh A, 2013. Comparison of fitting performance of random regression animal and sire models for yield traits of Iranian Holstein dairy cattle. Journal of Animal Science Researches. 4: 160–178. [persian]
Nilforooshan M and Edris MA, 2004. Effect of age at first calving on some productive and longevity traits in Iranian Holstein of the Isfahan province. Journal of Dairy Science 87: 2130–2135.
Olori VE, Meuwissen THE and Veerkampt R F, 2002. Calving interval and survival breeding values as measure of cow fertility in a pasture - based production system with seasonal calving. Journal of Dairy Science 85: 689–696.
Olsen HG, Hayes BJ, Kent MP, Nome T, Svendsen M, Larsgard AG and Lien S, 2011. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Animal Genetics 42: 466–74.
Penagaricano F, Weigel KA and Khatib H, 2012. Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle. Animal Genetics 43: 65–71.
Pryce JE, Haile-Mariam M, Verbyla K, Bowman PJ, Goddard ME and Hayes BJ, 2010. Genetic markers for lactation persistency in primiparous Australian dairy cows. Journal of Dairy Science 93: 2202–2214.
Rahbar R, Aminafshar M, Abdullahpour R and Chamani M, 2016. Genetic analysis of fertility traits of Holstein dairy cattle in warm and temperate climate. Acta Scientiarum Animal Sciences 38: 333–340.
Rezende FM, Dietsch GO and Penagaricano F, 2018. Genetic dissection of bull fertility in US Jersey dairy cattle. Animal Genetics 49: 393–402.
Royal MD, Flint APF and Woolliams JA, 2002. Genetic and phenotypic relationships among endocrine and traditional fertility traits and production traits in Holstein-Friesian dairy cows. Journal of Dairy Science 85: 958–967.
Sahana G, Guldbrandtsen B and Lund MS, 2011. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science 94: 479–486.
Seyed Sharifi R, Karari Niri K, Hedayat-Evrigh N, Seifdavati J and Bohlouli M, 2017. Genetic evalution of some type, production, reproduction and survival traits in Holstein cows in Isfahan province. Journal of Animal Environmental Research 3: 17–26.
Shirmoradi Z, Salehi AR, Pahlavan R and Mollasalehi MR, 2010. Genetic parameters and trend of production and reproduction traits in Iranian Holstein cattle. Journal of Animal Production 12: 21–28. [Persian]
Shook GE, 2006. Major advances in determining appropriate selection goals. Journal of Dairy Science 89:1349–1361.
Toghiani Pozveh S, Shadparvar AA, Moradi Shahrbabak M and Dadpasand Taromsari M, 2009. Genetic analysis of reproduction traits and their relationship with conformation traits in Holstein cows. Livestock Science 125: 84–87.
Toghiani S, 2012. Genetic relationships between production traits and reproductive performance in Holstein dairy cows. Archiv Tierzucht 5: 458–468.
VanRaden PM, Sanders AH, Tooker ME, Miller RH, Norman HD, Kuhn MT and Wiggans GR, 2004. Development of a national genetic evaluation for cow fertility. Journal of Dairy Science 87: 2285–2292.
Walsh SW, Williams EJ and Evans ACO, 2011. A review of the causes of poor fertility in high milk producing dairy cows. Animal Reproduction Science 123: 127–138.