ارزیابی انتخاب مرغ های بومی اصلاح شده فارس با رویکرد بررسی هم خونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 سازمان تحقیقات، آموزش و ترویج کشاورزی-موسسه تحقیقات علوم دامی کشور، بخش تحقیقات بیوتکنولوژی

چکیده

زمینه مطالعاتی: ارزیابی پسروی ناشی از هم‌خونی در صفات اقتصادی مرغ‌های بومی جهت ادامه عملیات اصلاح نژادی از اهمیت بالایی برخوردار است. هدف: این پژوهش به منظور پایش هم‌خونی و ارزیابی اثرات آن بر روی برخی از صفات اقتصادی در جمعیت مرغ بومی اصلاح شده فارس بر اساس اطلاعات شجره 25 نسل با استفاده از مدل‌های مختلف انجام شد. روش کار: در پژوهش حاضر، ابتدا ضرایب هم‌خونی فردی و مادری تمام پرندگان (63250 پرنده) با استفاده از برنامه CFCبرآورد گردید. سپس میزان تابعیت صفات از هم‌خونی فردی و مادری از طریق نرم افزارWombat و روش حداکثر درستنمایی محدود شده با استفاده از شش مدل مختلف محاسبه شد. مدل مناسب برای هر صفت از طریق آزمون نسبت درستنمایی (LRT) و معیارهای اطلاعات اِکایک (AIC) و بیزی (BIC) انتخاب گردید. نتایج: تعداد 40184 پرنده هم‌خون بودند و میانگین هم‌خونی فردی و مادری در طی 25 نسل نسبتاً پایین بود. میانگین هم‌خونی پرندگان، تقریباً برابر با دو درصد و در پرندگان هم‌خون، چهار درصد برآورد شد. بیشترین تعداد پرندگان هم‌خون در گروه هم‌خونی بین صفر تا پنج درصد (72/47 درصد) و بین پنج تا ده درصد (48/15 درصد) قرار گرفتند. بیشترین تأثیر هم‌خونی بر روی صفات وزن بدن در 8 و12 هفتگی مشاهده شد، به طوری که به ازای هر یک درصد افزایش هم‌خونی فردی، وزن بدن در 12 هفتگی به میزان ‌14/2 گرم و در 8 هفتگی به میزان ‌07/1 گرم کاهش می‌یابد. یک درصد افزایش هم‌خونی فردی سبب افزایش بلوغ جنسی به مقدار 38/0 روز شد. اثر پسروی ناشی از هم‌خونی در صفات تخم-مرغ شامل تعداد تخم‌مرغ، وزن اولین تخم‌مرغ و میانگین وزن تخم‌مرغ ناچیز برآورد شد. نتیجه گیری نهایی: هم‌خونی جمعیت با یک شیب نسبتاً ملایم و در سطحی قابل قبول رو به افزایش بوده است. نتایج نشان داد که برنامه‌های انتخاب پرندگان برتر در ایستگاه در طی نسل‌ها به لحاظ حفظ تنوع ژنتیکی و هم‌خونی حداقل، در مسیر صحیح خود پیش رفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the selection of improved Fars native fowl with the inbreeding assessment approach

نویسندگان [English]

  • Saber Jelokhani-Niaraki 1
  • Sholeh Ghorbani 2
1 Biotechnology department, Animal science research institute of Iran, Karaj.
2 Department of biotechnology-Animal science research institute of Iran- Agricultural Research,Education and Extension Organization
چکیده [English]

Evaluating the selection of improved Fars native fowl with the inbreeding assessment approach


Introduction:
Performance of native fowl can be improved by making changes in feeding, rearing and health issues. On the other hand, genetic improvement of these breeds can be achieved through the breeding programs such as selection, crossbreeding, or both. Selection programs may be time consuming, but implementing them will lead to a continued improvement (Padhi 2016). Considering the genetic diversity among the native fowl breeds of Iran, several breeding stations were established in different provinces of the country for the purpose of reproduction and genetic improvement of these breeds. Mating related animals in closed populations leading to accumulated inbreeding and reduced genetic diversity has destructive effects on additive genetic variance and phenotypic values (Falconer and Mackay 1996). Inbreeding is associated with an increase in homozygosity and usually decrease the fitness of individuals in the population, which is referred to as inbreeding depression (Ayroles et al. 2009). Inbreeding depression in domestic animals can cause reduced selection response and potential genetic gain in economic traits (Selvaggi et al. 2010). Since the improved Fars native fowls have been raised in a closed population and selected for some important economic traits during the successive generations, their inbreeding coefficients may increase and reduce the effectiveness of breeding programs. Therefore, it is of significant importance to monitor the inbreeding rate and its consequences on different traits.
The purpose of this study was to monitor the inbreeding rate and evaluate its possible effects on some important economic traits in improved Fars native fowl population using the pedigree information of 25 generations via different models.
Materials and methods:
Data of 63250 birds during the period 1369-1397 (25 generations) recorded in the breeding station of Fars native fowl were included in the study. Studied traits include body weight at hatch (BW1), body weight at 8 weeks of age (BW8), body weight at 12 weeks of age (BW12), age at sexual maturity (ASM), weight at sexual maturity (WSM), egg weight at 1st day of laying (EW1), egg number (EN) and average egg weight (AEW). Individual and maternal inbreeding coefficients of all birds estimated using the CFC program. Estimated inbreeding coefficients grouped into seven different categories of inbreeding: 0, 0 to 5%, 5 to 10%, 10 to 15%, 15 to 20%, 20 to 25% and 25 to 30%. Regression coefficients of studied traits on individual and maternal inbreeding percentage were estimated by Wombat software (May 2007) and restricted maximum likelihood (REML) method using six different models. Individual and maternal inbreeding coefficients were also included as a covariate in the model. In this study, among the six statistical models considered for each trait, finally, the appropriate model for each of them was selected through three methods of likelihood ratio test (LRT), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC).

Results and discussion:
Pedigree analysis showed that 40184 birds were inbred and the mean of individual and maternal inbreeding was relatively low over 25 generations. The average individual and maternal inbreeding did not differ much over the generations. According to the results, the mean inbreeding for all birds was approximately equal to 2 % and in inbred birds was 4 %. From the fifth generation onwards, the average inbreeding (individual and maternal) of birds in the whole population was increasing. In the first four generations, inbreeding rate of population was estimated to be zero, which may be due to the unknown pedigree information in the first generations. Various studies have shown that accurate estimation of inbreeding is highly dependent on pedigree information. The results of a previous study on laying hen strains indicated that pedigree information influenced the inbreeding estimation in the first generations (Szwaczkowski et al. 2003). In another study, Cassell et al. (2003) reported that the use of incomplete pedigree in estimating the mean inbreeding reduces the mean inbreeding estimate and the variance of these estimates in cows. From the fifth to eighth generation, the rate of individual and maternal inbreeding was very small. Distribution of birds in different categories of inbreeding showed that 36.57 % (23066 birds) were non-inbred. Classifying birds into different inbreeding groups indicated that the highest number of inbred birds was in the inbreeding group 0 to 5 % (47.72 %) and 5 to 10 % (15.48 %). Although the number of inbred birds is high, but the amount of inbreeding coefficient is significantly low, reflecting careful planning of mating in the station. The study of Kamali et al. (2007) on the pedigree information of Fars native fowl (21245 birds) during eight generations demonstrated that the inbreeding rate is low. In addition, in the previous study on the improved Mazandaran native fowl during 26 generations, it was shown that the rate of inbreeding is relatively low, which is in accordance with the results observed in the present study (Ghorbani and Omrani 1399). According to the fitted models, model 5 for BW1, BW8 and BW12, model 6 for ASM and AEW, model 2 for WSM, model 4 for EN and EW1 considered as the most suitable model. Estimating the inbreeding depression in the studied traits revealed the most effect of inbreeding on the BW12, so that for every 1 % increase in individual inbreeding, BW12 is reduced by 2.14 grams. Also, for every one % increase in individual inbreeding, BW8 decreases by 1.07 grams. The highest effect of inbreeding was observed on BW8 and BW12, so that for every 1 % increase in individual inbreeding, BW12 decreases by 2.14 grams and BW8 decreases by 1.07 grams. ASM was significantly affected by inbreeding depression. ASM increased by 0.38 day per 1 % increase in inbreeding. The finding of earlier studies regarding the inbreeding effect on the ASM have shown that increased inbreeding does not have the same effect on different strains. For example, increase in inbreeding level results in increased ASM in the Leghorn (Sewalem et al. 1999) and decreased ASM in the New Hampshire (Szwaczkowski et al. 2003). Taken together, pedigree analysis showed that the depression effect of inbreeding on egg traits including EN, EW1 and AEW was negligible.

Conclusion:
According to the results of pedigree analysis, inbreeding rate of improved Fars native fowl population is increasing at an acceptable level with a relatively gentle slope. In addition, depression caused by inbreeding in the population was fairly low. Since maintaining genetic diversity and keeping down the inbreeding rate in the station are considered as main factors in developing the breeding programs, it can be concluded that the implementation of breeding programs and selection of superior birds during the generations has gone in the right direction.

کلیدواژه‌ها [English]

  • Fars
  • Inbreeding
  • Model
  • Native fowl
  • Selection
Akaike H, 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
Ameli H, Flock DK and Glodek P, 1991. Cumulative inbreeding in commercial White Leghorn lines under long-term reciprocal recurrent selection. British Poultry Science 32: 439-449.
Analla M, Montilla JM and Serradilla JM, 1998. Analyses of lamb weight and ewe litter size in various lines of Spanish Merino sheep. Small Ruminant Research 29: 255-259.
Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zas SL, Drnevich JMCÁceres CE and Paige KN, 2009. A genome-wide assessment of inbreeding depression: Gene number, function and mode of action. Conservation Biology 23: 920-930.
Cassell BG, Amec V and Pearson RE, 2003. Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. Journal of Dairy Science 86: 2967-2976.
Darwin C, 1876. The effects of cross and self fertilization in the vegetable kingdom. London, UK: John Murray.
Desta T and Wakeyo O, 2012. Uses and flock management practices of scavenging chickens in Wolaita Zone of southern Ethiopia. Tropical Animal Health and Production 44: 537-544.
Desta T, Dessie T, Bettridge J, Lynch S, Melese K, Collins M, Christley R, Wigley P, Kaiser P, Terfa Z, Mwacharo J and Hanotte O, 2013. Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. Animal Genetic Resources 52:17-29.
Dudusola IO, Oseni SO and Adeyemi EA, 2019. Modeling the growth curve of Japanese Quail under different nutritional environments. Nigerian Journal of Animal Science 21: 53-58.
Falconer DS and Mackay TFC, 1996. Introduction to Quantitative Genetics, 4th ed. Longman Group Ltd., Essex, UK.
Fischer TM, Van der Werf JHJ, Banks RG and Ball AJ, 2004. Description of lamb growth using random regression on field data. Livestock Production Science 89: 175-185.
Frankel OH and Soule ME, 1981. Conservation and evolution. Cambridge University Press, Cambridge, United Kingdom.
Ghorbani S and Emrani H, 2020. Estimation of inbreeding rate and its depression on the economic traits of genetically improved native chickens of north of Iran. Animal Science Journal 33: 109-124.
Gowe RS, Fairfull RW, McMillan I and Schmidt GS, 1993. A strategy for maintaining high fertility and hatchability in a multiple-trait egg stock selection program. Poultry Science 72:1433-1448.
Hedrick P and Kalinowski S, 2000. Inbreeding Depression in Conservation Biology. Annual Review of Ecology and Systematics, 31, 139-162. Retrieved December 28, 2020, from http://www.jstor.org/stable/221728.
Kamali MA, Ghorbani S, Sharbabak M and Zamiri Javad, 2007. Heritabilities and genetic correlations of economic traits in Iranian native fowl and estimated genetic trend and inbreeding coefficients. British poultry science 48: 443-8.
Konig S, Tsehay F, Sitzenstock F, Von Borstel UU, Schmutz M, Preisinger R and  Simianer H, 2010. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory. Poultry Science 89: 658-667.
Lande R, 1988. Genetics and demography in biological conservation. Science 241:1455-1460.
Lewis F, Butler A and Gilbert L, 2011. A unified approach to model selection using the likelihood ratio test. Methods in Ecology and Evolution 2: 155-162.
Magothe T, Okeno T, Muhuyi WB and Kahi A, 2012. Indigenous chicken production in Kenya: I. Current status. World's Poultry Science Journal 68: 119-132.
Meyer K, 2007. WOMBAT, A tool for mixed model analyses in quantitative genetics by REML. Journal of Zhejiang University Science-B 8: 815-821.
Muir WM, Wong GKS, Zhang Y, Wang J, M. A. M, Groenen MAM, Crooijmans RPMA, Megens H, Zhang H, Okimoto R, Vereijken A, Jungerius A, Albers AGAA, Lawley CT, Delany ME, MacEachern S and Cheng HH, 2008. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings of the National Academy of Sciences of the United States of America 105: 17312-17317.
Padhi MK, 2016. Importance of Indigenous Breeds of Chicken for Rural Economy and Their Improvements for Higher Production Performance. Scientifica 2016: 2604685.
Rahmanian A,  Hafezian H, Rahimi GH, Farhadi A and  Baneh H, 2015. Inbreeding Depression for Economically Important Traits of Mazandaran Native Fowls. British Poultry Science 56: 22-29.
Sargolzaei M, Iwaisaki H and Colleau JJ, 2006. A tool for monitoring genetic diversity. In proceeding of the 8th World Congress Genetics Applied Livestock. ProBelo Horizonte, Brazil.
Savas T, Preisinger R, Rohe R, Kalm E and Flock DK, 1999. Auswirkungen der Inzucht auf Leistungsmerkmale und deren genetische Parameter bei Legehennen. Archiv Fur Geflugelkunde 63: 246-251.
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464.
Selvaggi M, Dario C, Peretti V, Ciotola F, Carnicella D and Dario M, 2010. Inbreeding depression in Leccese sheep. Small Ruminant Research 89: 42-46.
Sewalem A, Johansson K, Wilhelmson M and Lillpers K, 1999. Inbreeding and inbreeding depression on reproduction and production traits of White Leghorn lines selected for egg production traits. British Poultry Science 40: 203-208.
Szwaczkowski T, Cywa-Benko K and Wezyk S, 2003. A note on inbreeding effect on productive and reproductive traits in laying hens. Animal Science Papers and Reports 21:121-129.
Szwaczkowski T, Cywa-Benko K, and Wezyk S. 2004, Curvilinear inbreeding effects on some performance traits in laying hens. Journal of Applied Genetics 45: 343-345.
Tongsiri S, Jeyaruban GM, Hermesch S, Van der Werf JH, Li L and Chormai T, 2019. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australasian journal of animal sciences 32: 930-938.
Van Wyk JB, Fair MD and Cloete SWP, 2009. Case study: the effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livestock Science 120: 218-224.
Yadav A, Jain A, Sahu J, Dubey A, Gadpayle R, Kiran Barwa D and Kumar V, 2019. A review on the concept of inbreeding and its impact on livestock. International Journal of Fauna and Biological Studies 6: 23-30.
Zamani P, Amirabadi-Farahani M, Aliarabi H and Malecky M, 2016. Comparison of different Legendre and B-Spline random regression models to estimate variance components for average birth weight per lambing in Mehraban sheep. Iranian Journal of Animal Science 46: 407-415.