تاثیر مکمل تجاری مولتی‌اکت-ال بر عملکرد، کیفیت تخم مرغ، تیتر آنتی بادی علیه نیوکاسل، سطح آنتی‌اکسیدانی سرم خون و موروفولوژی روده در مرغ های تخمگذار تحت تنش گرمایی در انتهای دوره تولید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشگاه رازی

2 گروه علوم دامی دانشگاه صنعتی اصفهان

چکیده

زمینه مطالعاتی: مولتی اکت-ال ترکیبی از محرک‌های رشد غیرآنتی‌بیوتیکی شامل پروبیوتیک، پری‌بیوتیک، آنزیم‌ها، اسیدهای آلی، ترکیبات آنتی اکسیدانی و کیلیت مواد معدنی می ‌باشد که ممکن است بر عملکرد و کیفیت تخم‌مرغ‌های تولیدی تحت شرایط تنش گرمایی تاثیر مثبتی داشته باشد. . هدف: این آزمایش به منظور بررسی اثر مکمل مولتی‌اکت-ال بر عملکرد، کیفیت تخم‌مرغ، تیتر آنتی‌بادی علیه نیوکاسل، سطح آنتی‌اکسیدانی خون و ریخت‌شناسی روده مرغ‌های تخمگذاری که در شرایط تنش گرمایی نگهداری شده بودند، انجام گرفت. روش کار: این آزمایش در قالب طرح کاملاً تصادفی با سه تیمار شامل جیره‌ی شاهد و جیره‌ی شاهد مکمل‌شده با مقادیر 3/0 و 5/0 درصد مولتی‌اکت-ال با استفاده از تعداد 216 قطعه مرغ تخمگذار سویه LSL-Lite به مدت 8 هفته انجام شد. هر تیمار دارای 6 تکرار بود که در هر تکرار 12 پرنده (در 4 قفس متوالی و در هر قفس 3 مرغ) قرار داشت. مرغ‌ها در طول دوره‌ی آزمایشی به مدت 6 ساعت در معرض تنش گرمایی دوره-ایی (1±36 درجه سانتیگراد و میانگین رطوبت 5±30 درصد) قرار گرفتند. نتایج: استفاده از مکمل مولتی‌اکت-ال در مقادیر 3/0 یا 5/0 درصد جیره سبب افزایش معنی‌دار درصد تولید تخم‌مرغ، وزن تخم‌مرغ، خوراک مصرفی، بهبود درصد تلفات و ضریب تبدیل در مرغ‌های تخمگذار تحت تنش گرمایی شد (P<0.05). اما مکمل مولتی‌اکت-ال بر افزایش وزن مرغ‌های تخمگذار تاثیری نداشت (P>0.05). استفاده از 3/0 درصد مکمل مولتی‌اکت-ال در جیره سبب کاهش غیرمعنی‌دار تخم مرغ-های غیرطبیعی شد (P>0.05)، هرچند این مکمل تاثیری بر شاخص شکل، واحد هاو، ضخامت پوسته، چگالی نسبی، درصد وزنی زرده، درصد وزنی سفیده و درصد وزنی پوسته‌ی تخم‌مرغ نداشت (P>0.05). افزودن 5/0 درصد از مکمل مولتی‌اکت-ال به جیره مرغ‌های تخمگذار تحت تنش گرمایی سبب کاهش غلظت مالون‌دی‌آلدئید سرم و افزایش غلظت سوپراکسید دیسموتاز در خون تام (کامل) شد (P<0.05). افزایش غلظت گلوتاتیون پراکسیداز خون تام مشاهده شده در اثر افزودن مکمل مولتی اکت-ال به جیره‌ها از لحاظ آماری معنی دار نبود (P>0.05). تاثیر تیمارهای آزمایشی بر تیتر آنتی بادی علیه نیوکاسل، ظرفیت کل آنتی اکسیدانی سرم، مقادیر گلوکز، کلسترول، کلسیم، فسفر، اسید اوریک، آلبومین و تری گلیسرید معنی‌دار نبود (P>0.05). تیمارهای آزمایشی تاثیر معنی‌داری بر طول پرز، عمق کریپت، عرض پرز، مساحت سطح پرز و نسبت طول پرز به عمق کریپت در ناحیه ژوژنوم روده‌ی کوچک نداشتند (P>0.05). نتیجه‌گیری نهایی: با توجه به نتایج بدست آمده در تحقیق حاضر، استفاده از مکمل مولتی‌اکت-ال در جیره مرغ‌های تخمگذار تحت تنش گرمایی به میزان 3/0 درصد خوراک توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of supplementation of MultiAct-L® on production performance, egg quality, Newcastle disease antibody titer, antioxidant capacity and gut morphology of laying hens subjected to heat stress in late laying cycle

نویسندگان [English]

  • Reza Mahdavi 1
  • Ali Hossein Piray 1
  • Mohammad Sedghi 2
1 Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
2 Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Introduction: During the last two decades, the use of antibiotics in poultry diets as animal growth promotors and growth inhibitors of harmful microorganisms has been stopped in different parts of the world (Roth et al., 2019), which led to a decrease in poultry performance and an increase in the prevalence of diseases (Jha et al 2019; Adhikari et al 2020). Researchers have proposed various ways to improve production efficiency, including the use of probiotics, prebiotics, symbiotic, plant extracts, enzymes and organic acids (Gadde et al 2017; Yadav et al 2019). As the age of laying hens increases, the quality of the egg shell decreases, which is due to the increases in weight and size of eggs, the direct effect of age on the structure of the shell, decreased bone calcium uptake and etc (Curtis et al 2005; Curtis 2008). Heat stress has negative effects on the human health and animal performance and product quality. High ambient temperatures cause reduced egg production, egg weight, egg quality (especially egg shell thickness and strength), impaired immunity and poor poultry welfare (Elnagar et al 2010, Ebied et al 2012). The impaired performances of poultry subjected to heat stress (HS) have been associated with a number of factors, including poor appetite and reduced feed intake (due to activation of the hypothalamic-pituitary-adrenal axis), impaired digestion and metabolism, altered endocrine status (increased corticosterone concentration and reduced thyroid hormones concentrations), metabolic shifts at the systemic and cellular levels and changes in body composition (Elnagar et al 2010, Azad et al 2010, Ebied et al 2012, Safdari-Rostamabad et al 2017). Therefore, it is important to design the strategies or ways of minimizing the negative effect of heat stress as part of methods to maintaining egg production, egg quality and poultry welfare. There are several strategies to reduce the effects of heat stress in the laying hens, including use of feed additive, vitamins, organic minerals and antioxidants. In this study, researchers evaluated the effects of MultiAct-L® (Contains probiotics, prebiotics, organic acids, enzymes, organic form of Zn, Mn, Cu, Fe, Co, Cr and antioxidants) on production performance, egg quality, Newcastle disease antibody titer, antioxidant capacity and gut morphology of laying hens subjected to HS in late laying cycle.
Material and methods: Two hundred and sixteen LSL-Lite laying hens (90 weeks of age) were randomly assigned to three dietary treatments with six replicates and twelve birds in each replicate. Dietary treatments were: 1) basal diet based on a corn-soybean meal 2) basal diet with 0.3 % MultiAct-L® and 3) basal diet with 0.5% MultiAct-L®. The birds were exposed to 36±1°C for 6 hours per day. Egg production, egg weight, feed intake, egg mass and feed conversion ratio were recorded weekly and mortality was recorded daily. Egg mass was calculated by multiplying the total number of eggs laid per hens by the average egg weight. At the end of experimental period, one bird from each replicate (close to cage average weight) was slaughtered, and blood samples were taken for analysis. Blood samples were collected from the jugular vein and then serum samples were separated at 3000 ×g for 10 min. Total antioxidant capacity, malondialdehyde, glutathione peroxidase, superoxide dismutase, glucose, cholesterol, triglycerides, uric acid, albumin, calcium and phosphorus were measured using analytical kits. Serum titer to Newcastle disease virus was determined by hemagglutination inhibition test. Villus height, villus width, crypt depth, villus surface area and villus height/crypt depth were measured in the jejunum section of the small intestine. The data were analyzed using the general linear model procedure of the SAS (2003). The Duncan multiple range test was used to determine the significant differences between treatment means.
Results and discussion: MultiAct-L® did not affect the body weight gain of laying hens (P>0.05). The results also showed that feeding MultiAct-L® enhanced the feed intake, egg production, egg weight and egg mass (P<0.05). Feed conversion ratio was improved and mortality was lower in the treatments receiving 0.3 or 0.5% MultiAct-L® than the control group (P<0.05). In agreement with our findings, Deng et al. (2012) and Zhang et al. (2017) reported the significant increase of egg production, feed intake and egg weight by dietary supplementation of probiotic in laying hens subjected to HS. Supplementation of 0.3% MultiAct-L® to diet decreased the abnormal eggs (P>0.05). Shape index, Haugh unit, yolk weight, albumen weight, shell weight, shell thickness and egg specific gravity were not affected by dietary treatments (P>0.05). Similarly, Bozkurt et al. (2012) showed that egg quality parameters weren’t affected by dietary supplementation of essential oil or mannan oligosaccharide in laying hens subjected to heat stress. MultiAct-L® supplement did not significantly affect the titer of antibody against Newcastle disease virus at days 10 and 30 post-vaccination (P>0.05). There was no significant difference in the total antioxidant capacity and glutathione peroxidase among experimental treatments (P>0.05); however, dietary MultiAct-L® supplementation had increased the superoxide dismutase levels and decreased malondialdehyde levels in serum (P<0.05). Blood glucose, cholesterol, triglycerides, uric acid, albumin, calcium and phosphorus in experimental treatments were not significantly different between the control group and the MultiAct-L®-treated groups (P>0.05). No significant changes in villus height, villus width, villus surface area, crypt depth and villus height to crypt depth ratio were observed between three groups at the end of the 8 weeks experimental period (P>0.05). Similarly, Deng et al. (2012) showed that villus height, villus width, crypt depth in the ileum weren’t affected by dietary supplementation of probiotic in laying hens subjected to HS.
Conclusion: As for the results of this study, Multiact-L® could improve laying performance and antioxidant status in laying hens subjected to heat stress during the late laying period.

کلیدواژه‌ها [English]

  • Laying hens
  • MultiAct-L®
  • Egg quality
  • Intestinal morphology
  • Newcastle
  • Antioxidant
Adhikari P, Kiess A, Adhikari R and Jha R, 2020. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of Applied Poultry Research 29: 515–534.
Akbarian A, Michiels J, Degroote J, Majdeddin M,Golian A and De Smet S, 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of Animal Science and Biotechnology 7:37-51.
Azad MAK, Kikusato M, Maekawa T, Shirakawa H and Toyomizu M, 2010. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology Part A 155: 401-406.
Barrett NW, Rowland K, Schmidt CJ, Lamont SJ, Rothschild MF, Ashwell CM and Persia ME, 2019. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poultry Science 98:6684-6692
Bozkurt M, Kucukyilmaz K, Catli AU, Cınar M, Bintaş E, and Coven F, 2012. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poultry Science 91:1379-1386
Curtis PA, 2008. ‘Changes in eggs over a production cycle’, proceedings of the Midwest Poultry Federation Convention, St. Paul, Minnesota, USA.
Curtis PA, Kerth L and Anderson KE, 2005. Quality and compositional characteristics of layer hens as affected by bird age. 11th European Symposium on the Quality of Eggs and Egg products, Doowerth, The Netherlands, 214–219.
Deng W, Dong XF, Tong JM and Zhang Q, 2012. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poultry Science 91: 575-582
Ebeid TA, Suzuki T and Sugiyama T, 2012. High temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poultry Science. 91: 2282–2287.
Elnagar SA, Scheideler SE and Beck MM, 2010. Reproductive hormones, hepatic deiodinase messenger ribonucleic acid, and vasoactive intestinal polypeptide-immunoreactive cells in hypothalamus in the heat stress-induced or chemically induced hypothyroid laying hen. Poultry Science 89: 2001-2009.
Gadde UD, KimWH, Oh ST and Lillehoj HS, 2017 Alternatives to antibiotics for maximizing growth performance and feed e_ciency in poultry: A review. Animal Health Research Reviews 18: 26-45.
Gallazzi D, Giardini A, Grazia Mangiagalli M, Marelli S, Ferrazzi V, Orsi S and Guidobono Cavalchini L,
2008. Effects of Lactobacillus acidophilus D2/ CSL on laying hen performance. Italian Journal of Animal Science 7: 27-37.
Hamilton RMG, 1982. Methods and factors that affect the measurement of egg shell quality. Poultry Science 61: 2022-2039.
Jha R, Fouhse JM, Tiwari UP, Li L and Willing BP, 2019. Dietary Fiber and Intestinal Health of Monogastric Animals. Frontiers in Veterinary Science.  6: 48.
Kilic I and Simsek E, 2013.The Effects of Heat Stress on Egg Production and Quality of Laying Hens. Journal of Animal and Veterinary Advances12 (1): 42-47.
Langhout P and Sus T, 2005. Volatile fatty acids improve performance and quality. International Poultry Production 13(3): 17.
Li GM, Liu P, Yin B, YueLiu Y, WenDong W, Gong Sh, Zhang J and HeTan J, 2020. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poultry Science 99:6084-6093.
Lim  HS and Paik IK, 2003. Effects of Supplementary Mineral Methionine Chelates (Zn, Cu, Mn) on the Performance and Eggshell Quality of Laying Hens. Asian-Australasian Journal of Animal Sciences 16 (12): 1804-1808.
LOHMANN TIERZUCHT-GmbH. Management Guide LSL-Lite North America Cage. https://lohmann-breeders.com/media/2020/07/ManagementGuideLSLLiteNorthAmericaCage.pdf
Mabe I, Rapp C, Bain MM and Nys Y, 2003. Supplementation of a corn-soybean meal diet with  manganese, copper and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poultry Science 82: 1903-1913.
Mahmoud KZ and Hijazi AA, 2007. Effect of vitamin A and/or E on plasma enzymatic antioxidant systems and total antioxidant capacity of broiler chickens challenged with carbon tetrachloride. Journal of Animal Physiology and Animal Nutrition 91: 333-340.
Ostalowska A, Birkner E, Wiecha M, Kasperczyk S, Kasperczyk A, Kapolka  and Zon-Giebel A, 2006. Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage 14: 139-145.
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C and Domig KJ, 2019. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science 98: 1791-1804.
Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH and Sarir H, 2017. Nanoselenium supplementation of heat-stressed broilers: effects on performance, Carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biological Trace Element Research 178(1):105-116. 
Saint Pierre NR, Cobanov B and Schnitkey G, 2003. Economic losses from heat stress by US livestock industries. Journal of Dairy Science 86: E52-E77.
SAS Institute, 2003. SAS user’s guide: statistics. Version 9.2. SAS Institute Inc., cary, NC. Pp: 126-178.
Sun X, McElroy A, Webb Jr KE, Sefton AE and Novak C, 2005. Broiler performance and intestinal alterations when fed drug-free diets. Poultry Science 84: 294-1302.
Williams KC, 1992. Some factors affecting albumen quality with particular reference to Haugh unit score. World’s Poultry Science Journal 48: 5-16.
Yadav S and Jha,R, 2019. Strategies to modulate the intestinal microbiota and their e_ects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology 10: 2.
Yuan B, Ohyama K, Bessho T, Uchide N and Toyoda H, 2008. Imbalance between ROS production and elimination results in apoptosis induction in primary smooth chorion trophoblast cells prepared from human fetal membrane tissues. Life Science 82(11-12): 623-630.
Zhang P, Yan T, Wang X, Kuang S, Xiao Y, Lu W and Bi D, 2017. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrie r function and improving gut microbiota. Italian Journal of Animal Science. 16 (2): 292-300.