ارزیابی ژنتیکی جامعه گاوهای شیری هلشتاین اصفهان برای صفت سرعت دوشش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان،دانشکده کشاورزی، گروه علوم دامی، اصفهان، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3 سنندج، دانشگاه کردستان، گروه علوم دامی

چکیده

زمینه مطالعاتی: صفت سرعت دوشش به دلیل ارتباط با میزان تولید شیر، سلامت پستان، ماندگاری دام در سطح گله و بازدهی نیروی کار از جمله صفات حائز اهمیت در صنعت پرورش گاو شیری است. هدف: تحقیق حاضر با هدف برآورد سرعت دوشش در گاوهای شیری هلشتاین استان اصفهان، تخمین فراسنجه‌های ژنتیکی سرعت دوشش و صفات مرتبط با آن و نیز برآورد ارتباط سرعت دوشش با صفات تولیدی و عملکردی صورت گرفت. روش کار: اطلاعات 5292 مشاهده مربوط به 1762 گاو از 7 گله از گله‌های صنعتی گاوهای هلشتاین استان اصفهان طی مهرماه تا اسفندماه سال 1394 داده برداری شد و مورد ارزیابی قرار گرفت. در این تحقیق برای ارزیابی سرعت دوشش، از معیار متوسط سرعت دوشش استفاده شد. به منظور بررسی ارتباط صفت سرعت دوشش با ترکیبات شیر؛ صفاتی نظیر درصد چربی شیر، درصد پروتئین شیر و امتیاز سلول‌های بدنی موجود در شیر نیز مورد تجزیه و تحلیل قرار گرفت. نتایج: اثرات گله، نوبت زایش، نوبت دوشش و مرحله شیردهی بر صفت سرعت دوشش معنی‌دار بود (01/0>p). میانگین سرعت دوشش دامهای مورد بررسی در این تحقیق 75/0±96/1 کیلوگرم بر دقیقه و میانگین حداقل مربعات سرعت دوشش در جامعه مورد بررسی (01/0±)11/2 کیلوگرم بر دقیقه برآورد گردید. وراثت پذیری صفت سرعت دوشش در این تحقیق (06/0±)22/0 برآورد گردید. از طرفی همبستگی ژنتیکی بالایی بین صفت سرعت دوشش با صفات تولید شیر (90/0) و مدت زمان دوشش (83/0-) ملاحظه شد. ارتباط ژنتیکی میان صفت سرعت دوشش و درصد چربی شیر (69/0-)، درصد پروتئین شیر (47/0-) و امتیاز سلولهای بدنی موجود در شیر (36/0-) نشان دهنده این مطلب است که با افزایش غلظت شیر از نظر چربی یا پروتئین و شمار سلولهای بدنی موجود در شیر، سرعت دوشش نیز کاهش می‌یابد. نتیجه گیری کلی: سرعت دوشش دارای ضریب وراثت پذیری در حد متوسطی است که امکان انتخاب برای بهبود این صفت در برنامه های بهنژادی را فراهم می نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic evaluation of Isfahan Holstein dairy cows for milking speed

نویسندگان [English]

  • Davoud Rostami 1
  • Abbas Pakdel 2
  • Saieed Ansari Mahyari 2
  • Mohammad Razmkabir 3
1 Isfahan university of technology, agriculture college, department of animal science, Isfahan, iran
2 Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran, P. O. Box 84156-83111
3 Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Introduction: Milking activity is one of the most important daily activities in industrial dairy farms, which accounts for about 80 percent of the annual milking costs and more than 50 percent of the daily activities of each dairy farm. Milking speed (MS) is an important functional trait to dairy producers and in few countries (e.g. Canada), MS have been recorded for several years by milk recording agencies. Functional traits include traits related to animal health, feed efficiency, milkability, and calving ease. Milkability is the ease of milking in dairy cows (Gäde 2007). One of the important traits related to milkability is milking speed and usually, milkability is evaluated by measuring this trait (Gray et al. 2012). Milking speed refers to the amount of milk released from the mammary glands per minute (Klindworth 2003). Due to the effect of milking speed on udder health and labor productivity, this trait is considered a very important one from an economic point of view and has been emphasized in dairy cow selection programs for many years (Karacaören et al. 2006). However, there is evidence that increasing of milking speed is associated with increasing of udder health problems such as mastitis, and as a result, the optimal milking speed is considered by breeders. Milking speed can be assessed based on two indicators; 1) Scoring based on 1 to 5 points and 2) Using electronic stopwatch and flowmeter. The advantage of using a stopwatch is that it is being used easier than a flowmeter and the duration of its use is being reduced, However, the need for a technician to be present during milking is a major drawback of this method (Beard, K. 1993). This study aimed to estimate genetic parameters for milking speed and association between milking speed and milk components (somatic cell score, protein percentage, and fat percentage), in Holstein dairy cows in Isfahan province, Iran.
Material and Methods: Data were 5292 observations related to 1762 cows in 7 herds of Holstein dairy cows in Isfahan between October 2015 and April 2016. The distribution of MS scores was skewed toward faster milking speeds. Milk components data, including fat percentage, protein percentage and somatic cell count, belong to the same date, was obtained from the Isfahan Farmers' Cooperative (Vahdat). Only herds with complete pedigree information and three milkings records per day were selectected for final dataset. The milking time of each animal was measured by using a stopwatch and recorded in the form. Data editing quality control was performed by using Excel (2013) and FoxPro 9.0. The average milking flow rate criterion(amount of produced milk in kilograms divided by the milking time in minutes) was used to evaluate the trait of milking speed. To generate data with normal distribution, the somatic cell count (SCC) was transformed to somatic cell score (SCS) by natural logarithmic conversion. Pedigree was traced back to the founder generation. (Co)variance components were estimated using a DMU software package with an average-information (AI)-REML algorithm for the analysis of multivariate mixed models (Madsen and Jensen, 2013).Genetic evaluations and Best Linear Unbiasd Prediction (BLUP) of breeding values for milking speed was computed with the animal model by DMU program.
Results and Discussion: The results of the analysis of variance showed that the effects of herd, milking frequency, parity, and stage of lactation on milking speed were significant (p <0.01) and remained in the model. However, the effect of age at the first calving on this trait was not significant (p > 0.05). Mean of milking speed of the animals in this study was 1.96 ± 0.75 kg/min, and the least square means of milking speed in the population was 2.11 (±0.01) kg/min. The highest least square means of milking speed belonged to the third-parity cows with a mean of 2/21 (±0.01) kg/min and the least square means of milking speed belonged to the primiparous cows with mean of 1/98 (±0.02). Older cows have higher-capacity gland cisterns, and consequently, their cisterns can store more milk than the cisterns of primiparous cows. More milk stored in the cisterns can put more pressure on the teat sphincter and escape more quickly. By stages of lactation, the highest least square means of milking speed was observed in group 4 (the cows in the 51 to 65 DIM) with mean of 2/32 (±0.05) kg/min which can be due to the location of the animal in its milk yield peak. Also, the lowest least square means of milking speed was related to group 15 (the cows in the 321 to 350) with mean of 1.79 (±0.04) kg/min. In late lacataion stage, the amount of milk produced by the cow will reach the lowest possible level during its lactation stage. The estimated heritability of the milking speed in this study was 0.22 (±0.06). The results of this study showed that the traits related to milkability have moderate heritability. A high genetic correlation was observed between milking speed and milk yield (0.90) and milking time (-0.83). The estimated genetic correlation between milking speed with fat percentage and protein percentage was high and negative, -0.69 and -0.47, respectively. In this study, the estimated genetic correlation between milking speed and somatic cell score showed that selecting to increase the milking speed would reduce the somatic cell count. In general, Genetic evaluations for MS can provide useful information for breeding decisions because of the moderate heritability of MS.
Conclusion: Milking speed has a moderate heritability that allows selection to improve this trait in breeding programs.

کلیدواژه‌ها [English]

  • Genetic evaluation
  • Genetic parameters
  • Holstein cows
  • Milking speed
  • Milking time
Ali AKA and Shook GE, 1980. An optimum transformation for somatic cell concentration in milk. Journal of Dairy Science, 63: 487-490.
Amin  AA,  2007.  Genetic and permanent environmental variations in daily milk yield and milk flowrates in Hungarian Holstein Friesian. Archivfur Tierzucht 50: 535-548.
Banos G, and Burnside E, 1992. Genetic evaluation of Canadian dairy bulls for milking speed with an animal model. Canadian Journal of Animal Science,   7:169-172.
Beard K, 1993. Genetic evaluation for milking speed, temperament, likability, and survival in Australia. Interbull Bulletin.
Blasco E, Gomez EA, Vicente C, Vidal G, Peris C, 2016. Factors affecting milking speed in Murciano-Granadina breed goats. Journal of dairy Dairy Science Science 99: 10102-10108.
Boettcher P, Dekkers J, and Kolstad B, 1998. Development of an udder health index for sire selection based on somatic cell score, udder conformation, and milking speed. Journal of Dairy Science 81:1157-1168.
Brumby P L, 1956. The milking characteristics of identical twin cattle. Proceedings of the New Zealand Society of Animal Production 16:89-94.
Carlström CG, Pettersson K, Johansson E, Strandberg H, Stålhammar and Philipsson J, 2013. Feasibility of using automatic milking system data from commercial herds for genetic analysis of milkability. Journal of Dairy Science 96:5324-5332.
Carlström CG, Pettersson K, Johansson E, Strandberg H, Stålhammar and Philipsson J, 2014. Genetic evaluation of in-line recorded milkability from milking parlors and automatic milking systems. Journal of Dairy Science 97:497-506.
Colleau JJ, Bougler J, and Derivaux P, 1971. The use of total milking time in selecting cows for milking rate. I. Testing of bulls. Journal of Animal Genetic Selection 3:169.
Dodenhoff  J,  Emmerling  R, 2009. Genetic parameters for milkability from the first three lactations in  Fleckvieh cows.  Animal 3:329-335.
Dodenhoff  J,  Sprengel  D,  Duda  J,  Dempfle  L, 1999. Potential use parameters of the milk flow curve for genetic evaluation of milkability. INTERBULL Bulletin 23:131-141.
 Duda J, 1996. New prospects in sire evaluation for milkability. Interbull Bulletin. 12.
Edwards J, Jago J and Lopez-Villalobos N, 2014. Analysis of milking characteristics in New Zealand dairy cows. Journal of Ddairy Sscience. 97:259-269.
El Faro L, 2010. Estimates of Genetic Parameters of Milk Yield and Milking Speed of Holstein Cows. University Federal do Amazonas, Brazil. 123: 1-7.
Gäde S, 2007. Estimates of genetic parameters for functional traits in dairy cows and sows. Selbstverl. d. Inst. f. Tierzucht u. Tierhaltung.
Gray KA, Cassady JP, Huang Y and Maltecca C, 2012. Effectiveness of genomic prediction on milk flow traits in dairy cattle. Genetics Selection Evolution. 44:1.
Haile‐Mariam M, Nieuwhof G, Beard K, Konstatinov K, and Hayes B, 2013. Comparison of heritabilities of dairy traits in Australian Holstein‐Friesian cattle from genomic and pedigree data and implications for genomic evaluations. Journal of Animal Breeding and Genetics, 130:20-31.
Hogeveen H, and Ouweltjes W, 2003. Sensors and management support in high-technology milking. Journal of Animal Science. 81:1-10.
Ilahi H, Chastin P, Martin J, Monod F, and Manfredi E, 1998. Genetic association between milking speed and milk production. Proc. 6 th Wrld. Congress. Genetic. Applied. Livestock. Production,   24:216-219.
Karacaören B, Jaffrézic F, and Kadarmideen H, 2006. Genetic parameters for functional traits in dairy cattle from daily random regression models. Journal of Dairy Science.   89:791-798.
Klindworth D, 2003. cow time glossary. from www.cowtime.com.au/p_ further_assistance_glossary_and _Contacts.pdf.
Lee DH, and Choudhary V, 2006. Study on milkability traits in Holstein cows. Asian Australasian Journal of Animal Science,   19:309.
Lučić M, Pocrnić I,  Špehar M, Štepec M, Ivkić Z,  and Barać Z , 2013. Estimation of genetic parameters for milking speed for Holstein cattle in Croatia. In: 24th International Scientific-Expert Conference of Agriculture and Food Industry, Sarajevo, September 25-28.
Luttinen A, and Juga J, 1997. Genetic relationships between milk yield, somatic cell count, mastitis, milkability and leakage in Finnish dairy cattle population. Interbull Bulletin, 15:78.
Madalena FE, Martinez ML, and Freitas AFD, 1979. Lactation curves of Holstein-Friesian and Holstein-Friesian x Gir cows. Animal Science 29:101-107.
Madsen P, and Jensen J, 2013. DMU, A Package for Analysing Multivariate Mixed Models. Version 6, : Release 5.2.
Miller RH, Pearson R E, Weinland BT, and Fulton L A, 1976. Genetic parameters of several measures of milk flow rate and milking time. Journal of Dairy Science 59:957-964.
Müller J, 1974. On sources of measured technical efficiency: the impact of information. American Journal of Agricultural Economics 56:730-738.
Potočnik K, Gantner V, Štepec M, Jovanovac S, and Krsnik J, 2006. Genetic evaluation of milking speed for Slovenian Holstein cattle regarding to different scoring approaches. Acta Agraria Kaposvariensis 10:99-104.
Prendiville R, Pierce K,  and Buckley F, 2010. A comparison between Holstein-Friesian and Jersey dairy cows and their F 1 cross with regard to milk yield, somatic cell score, mastitis, and milking characteristics under grazing conditions. Journal of Dairy Science 93:2741-2750.
Rensing S, and Ruten W, 2005. Genetic evaluation for milking speed in German Holstein population using different traits in a multiple trait repeatability model. Interbull Bulletin 33:163.
Roth S, Reinsch N, Nieland G, Schallenberger E, 1998. Untersuchungen über Zusammenhänge zwischen Eutergesunheit, Melkbarkeitsparametern und Milchflußkurven an einer Hochleistungsrinderherde. Züchtungskunde 70: 242-260.
Samoré AB, Rizzi R, Rossoni  A,  and Bagnato A, 2010. Genetic parameters for functional longevity, type traits, somatic cell scores, milk flow and production in the Italian Brown Swiss. Italian Journal of Animal Science 9:e28.
Sandrucci A, Tamburini A Bava L, and Zucali M, 2007. Factors affecting milk flow traits in dairy cows: results of a field study. Journal of Dairy Science 90: 1159-1167.
Santus E, and Ghiroldi S, 2005. Milkability genetic evaluation in Brown Swiss: An international approach. Interbull Bulletin 33:25.
Schrooten C, 2004. Genomic variation in dairy cattle: identification and use. [sn].
Sørensen M K, Berg P, Jensen J, and Christensen LG, 1999. Stochastic simulation of breeding schemes for total merit in dairy cattle. Interbull Bulletin 23:183.
Špehar M, Mandica L, Miran Š, Zdenko I, Maja D, and Klemen P, 2017. Genetic parameters estimation for milking speed in Croatian Holstein cattle. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka 67, no 1: 33-41.
Sprengel D, Dodenhoff J, Götz KU, Duda J,  and Dempfle L, 2001. International genetic evaluation for milkability. Interbull Bulletin 27:35.
Tomaszewski MA, Hargrove GL,  and  Legates JE, 1975. An assessment of field measures of milking rate. Journal of Dairy Science 58:545-550.
Wiggans G, Thornton L, Neitzel R,  and Gengler N, 2007. Short communication: Genetic evaluation of milking speed for Brown Swiss dairy cattle in the United States. Journal of Dairy Science 90:1021-1023.
Williams C, Burnside E, and Schaeffer L, 1984. Genetic and environmental parameters of two field measures of milking speed. Journal of Dairy Science 67:1273-1280.