برآورد بیزین فراسنجه های منحنی شیردهی در گاوهای شیری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران

2 گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

3 گروه علوم دامی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر،ایران

چکیده

زمینه مطالعاتی: نمایش نموداری ترشح شیر در یک دوره شیردهی به‌عنوان منحنی شیردهی شناخته می‌شود. با ارزیابی منحنی شیردهی طراحی راهکارهای مناسب برای پرورش و مدیریّت گاوهای شیری راحت‌تر انجام می‌شود. برای توصیف تولید شیر در یک دوره‌ی شیردهی در گاوهای شیری، مدل‌های ریاضی مختلفی توسعه‌یافته‌اند. برآورد پارامترهای این مدل‌ها در مورد گاوهای شیری ایران، با استفاده از روش بیزین انجام‌نشده است. هدف: تحقیق حاضر، برآورد بیزین پارامترهای مدل‌های ریاضی وود، میلک بات، گمپرتز، دایجکسترا، کوبی- لیدو، ون برتالانفی، برودی و لاجستیک برای منحنی شیردهی بود. تعداد 30618، 30685 و 30627 رکورد روز آزمون به ترتیب برای تولید شیر، درصد چربی و درصد پروتئین مورداستفاده قرار گرفت. این رکوردها مربوط به‌روزهای ۵ تا ۳۰۵ روز دوره‌ی اوّل شیردهی گاوهای هلشتاین ایران با 3685 گاو از 350 گلّه بود. روش کار: در ابتدا داده‌ها برای اثرات ثابت معنی‌دارHTD و سن زایش گوساله تصحیح شدند. پارامترهای منحنی‌های شیردهی با استفاده از رکوردهای روز آزمون گاوها در رویه MCMC نرم‌افزار SAS و با به کار بردن یک مدل غیرخطی مختلط با روش بیزین برآورد گردیدند. برای در نظر گرفتن منحنی شیردهی انفرادی هرکدام از گاوها، اثر هر گاو به‌عنوان اثر تصادفی در تمامی مدل‌های غیرخطی مورداستفاده قرار گرفت. برای نمونه‌گیری از توزیع پسین پارامترها، از الگوریتم نمونه‌گیری زنجیره‌ی مارکوف مونت‌کارلو، با در نظر گرفتن دوره‌ی قلق گیری، فاصله‌ی نمونه‌گیری و تعداد کل سیکل به ترتیب 150000،100 و 400000 سیکل برای هرکدام، به دست آمد. برای بررسی مقادیر نمونه‌گیری شده و محاسبه شاخص‌ همگرایی، از اندازه‌ی مؤثّر نمونه و آزمون تشخیص جوک استفاده گردید. مدل‌ها، توسّط معیار انحراف اطّلاعات (DIC) باهم مقایسه شدند. نتایج: با بررسی آماره توابع و شاخص‌های همگرایی، تابع برودی برای تولید شیر و تابع وود برای درصد چربی و درصد پروتئین مناسب‌ترین مدل و برازش بهتری را نشان دادند. در نتایج به‌دست‌آمده، پارامترهای برآورد شده از تابع برودی برای تولید شیر به ترتیب 219/37، 544/0 و 084/0 برای a،b و c بود. برای درصد چربی شیر و درصد پروتئین شیر پارامترهای برآورد شده از تابع وود به ترتیب 29/4 و 53/3 برای a، 08/0- و 04/0- برای b و 0008/0- و 0004/0- برای c بود. نتیجه‌گیری نهایی: نتایج تحقیق حاضر، نشان داد که توابع برودی و وود به ترتیب، به‌عنوان بهترین مدل در پیش‌بینی تولید شیر و صفات تولیدی در گاوهای هلشتاین ایران در دوره‌ی اوّل شیردهی می‎‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Bayesian estimation of lactation curve’s parameters in Iranian dairy cows

نویسندگان [English]

  • keyvan Radjabalizadeh 1
  • Sadegh Alijani 2
  • ablfazl ghorbani 3
  • Tarlan farahvash 1
1 Department of Animal Science, Shabestar branch, Islamic Azad University, Shabestar, Iran
2 Department of Animal science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Department of Animal Science, Shabestar branch, Islamic Azad University, Shabestar, Iran
چکیده [English]

Introduction: The graphical representation of daily milk yield during lactating period is lactation curve. There are many advantages of evaluation of the lactation curve in dairy cows, such as designing suitable breeding and management strategies for dairy cattle, genetic evaluation of dairy cows, and the prediction of the total milk yield of cow To explain the flow of milk production over the course of lactation in dairy cows, various mathematical models have been developed (Wilmink 1987; Wood 1967).There are many earlier studies that have successfully applied lactation curves in modeling the milk yield-DIM of Iranian Holstein. In all of these research the classic or Frequentist statistical methods have been used for parameter estimation and statistical inferences. The parameters of these models have not been estimated for Iranian dairy cows using Bayesian method. In the Bayesian approach, the parameters of the model are random variables, and inference is made on parameters using their posterior distributions (in some cases without the assumption of normality of the studied data) and need for huge data (Iqbal et al. 2019).This study was Bayesian estimation of the parameters of Wood, Milkbot, Gompertz, Dijkstra, Cobby and Le Du, Von Bertalanffy, Brody and Logistic mathematical models for the lactation curve. This was done using 30618, 30685 and 30627 days in milk (DIM) records of milk yield, fat percentage and protein percentage, respectively. These records were related to the days of 5 to 305 days of the first lactation period of Iranian Holstein cows with 3685 cows out of 350 herds. These data have been collected by National Breeding Center and improvement of animal production of Iran in registered herds of Holstein cows.
Material and Methods: Data were initially adjusted for significant fixed effects that were herd-test-date (HTD) and age at calving. In order to be accurate and due to the high computational needs of Bayesian method, in this study, 30618, 30685 and 30627 records of milk production test day, fat percentage and protein percentage related to the first lactation period belonged to 3685 Holstein cows out of 350, respectively. For test-day records of milk yields, an outlier control assessment was conducted. 99.73 % of the observations accounted for data within the μ ± 3 standard deviations range. Records outside this range have been taken into consideration outliers (Junior et al. 2018). Bayesian inference was used to estimate the subsequent distribution of both unknown parameters of each lactation curve model, using a mixed nonlinear model to which the random lactation effect of each cow was added to account for the individual lactation curve of each cow. The parameters of lactation curves were estimated using the cow's test day records in the MCMC procedure of SAS software. To consider the individual lactation curve of each cow, the effect of each cow was used as a random effect in all nonlinear models. For sampling of the posterior distribution of parameters, the Monte Carlo Markov chain sampling algorithm was obtained by considering the burn-in period, sampling interval (thin) and number of cycles of 150,000, 100 iterations and 400,000 cycles for each, respectively. The effective sample size and Geweke detection test was used to evaluate the sampled amount and calculate the convergence indices. Comparisons of the models were made based on the Deviance Information Criterion (DIC). To determine the significance of the difference between the two models, if the difference between the two nonlinear models was less than 10, the DIC index was considered non-significant and if it was 10 or more, it was considered significant (Iqbal et al., 2019).
Results and Discussion: By examining the statistics of functions and convergence indices, Brody function for milk production and Wood function for fat percentage and protein percentage showed the most suitable model and better fit. The Convergence has been achieved according to Geweke test (Geweke 1992) statistic P-value. In the protein percentage fitting curve, Wood model was selected despite the significance of parameter a in the Geweke test (P <0.05) due to the appropriate trace plot. Effective sample size and the simulation sample size (4000) indicate convergence in all parameters. The differences between DIC values were found greater than 10 points for most of the cases, indicating high significant difference between the fitted models. In the results, the estimated parameters of the Brody function for milk production were 37.219, 0.544 and 0.084 for a, b and c, respectively. For milk fat percentage and milk protein percentage, the estimated parameters of Wood function were 4.29 and 3.53 for a, -0.08 and -0.04 for b, -0.0008 and -0.0004 for c, respectively. For the first 30 days, a modified gamma function gave the best fit for the first lactation (Sherchland et al. 1995).The Wood curve was superior to the Gompertz function in fitting the data and, hence, it was used for biological inference (Hansen et al. 2012).In another study by Bangar and Verma (2017) to compare four nonlinear models, Wood, quadratic model, mixed logarithmic model and Wilmink to fit the shape of lactation curves of milk production and its production traits in Gir crossbred cows in India, Wood model as the best model for Fitting of milk production data and production traits were introduced.
Conclusion: Bayesian method can be used in modeling complex nonlinear functions for lactation curves, especially with a small amount of data. Biological interpretation of these parameters makes it possible to use these estimates in a selection index to genetically modify the lactation curve. This shows that Brody and Wood functions, respectively, as the best model in predicting milk production and production traits in Iranian Holstein cows in the first lactation period.

کلیدواژه‌ها [English]

  • Bayesian estimation
  • Convergence diagnostic
  • Holstein cows
  • Lactation curve
  • Markov chain Monte Carlo
Alijani S, Jasouri M, Pirany N and Kia HD, 2012. Estimation of variance components for some production traits of Iranian Holstein dairy cattle using Bayesian and AI-REML methods. Pakistan Veterinary Journal 32: 562-566.
Arianfar M, Rokouei M, Dashab GR and Faraji-Arough H, 2018. Comparison and evaluation of some mathematical functions in describing the lactation curve of Iranian dairy cattle. Animal Production20:351-363 (In Persian).
Bangar YC and Verma MR, 2017. Non-linear modeling to describe lactation curve in Gir crossbred cows. Journal of Animal Science and Technology59: 1-7.
Boujenane I , 2013. Comparision of different lactation curve models to describe lactation curve Holstein - Friesian dairy cows. Iranian Journal of Applied Animal Science 3: 817-822.
Donger V, Gandhi RS and Singh A, 2012. Comparison of different lactation curve models in Sahiwal cows. Turkish  Journal of  Veterinary Animal Science36: 723-726.
Elahi Torshizi ME, Aslamenejad AA, Nassiri MR and Farhangfar H, 2011. Comparison and evaluation of mathematical lactation curve functions of Iranian primiparous Holsteins. South  African  Journal of  Animal  Science41: 104 - 115.
Ferreira AGT,Henrique DS, Vieira RAM ,MaedaEM and ValottoAA, 2015. Fitting mathematical models to lactation curves from holstein cowsin the southwestern region of the state of Parana, Brazil. Annals of the Brazilian Academy of Sciences 87: 503-517.
Geweke J, 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: JM Bernardo, JO Berger, AP Dawid and AFM Smith(editors). Bayesian Statistics 4th ed. Clarendon Press, UK, Pp. 169-193.
Hansen AV, Strathe AB, Kebreab E, France J and Theil P, 2012. Predicting milk yield and composition in lactating sows: A Bayesian approach. Journal of Animal Science90: 2285-2298.
Iqbal F, Tariq MM, Eyduran E, Zil-e-Huma, Waheed A, Abbas F, Ali M, Rashid N, Rafeeg M and Mustafa Z, 2019. Fitting nonlinear growth models on weight in Mengali sheep through Bayesian inference. Pakistan Journal of Zoology 51: 459-466.
Jensen J, Wang CS, Sorensen DA and Gianola D, 1994. Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects, using the Gibbs sampler. Journal of Acta Agricaltura Escandinavica 44: 193-202
Jonathan FR, Thomas RF, Thomas MG, 2017. Application of a Bayesian ordinal animal model for the estimation of breeding values for the resistance to Monilinia fruticola (G.Winter) Honey in progenies of peach [Prunus persica (L.) Batsch]. Breeding Science 67:110-122
 Junior JA, Gonçalves T, Souza Jd, Rodriguez MA, Costa C and Carvalheira JGV, 2018. Adjustment of lactation curves of Holstein cows from herds of Minas Gerais, Brazil. Journal of Agricultural Science 10:1-14.
Kong L, Lia J, Lia R, Zhaoc X, Mad Y, Sunb S, HuangaJ, Juc Z, Houa M and Zhonga J, 2018. Estimation of 305-day milk yield from test-day records of Chinese Holstein cattle. Journal of Applied Animal Research 46:791-797.
Lotfi S, Lotfi R, Vahidian Kamyad Aand Farhangfar H, 2014. Modeling the lactation curve of Holstein dairy cows using the Sine function and comparing it with Dijekstra and Wood’s functions in a herd of Holstein dairy cow. Iranian Journal of Animal Science 45:59-68.
Orman MN and Ertuğrul O, 1999.  Investigation of three different lactation models in milk yields of holstein cows. Turkish Journal of Veterinary Animal Science 23: 605-614.
Piccardi M, Macchiavelli R, Funes AC, Bó GA and Balzarin M, 2017. Fitting milk production curves through nonlinear mixed models. Journal of Dairy Research 84:1-8.
Rekaya P, Carabaño MJ and Toro MA, 2000. Bayesian analysis of lactation curves of Holestein-Friesian cattle using a nonlinear model. Journal of  Dairy Science 83: 2691‑2701.
SAS Institute 2018. SAS/STAT software for windows 9.3. Cary, NC: SAS institute inc.
Sherchland L, Mcnew RW, Kellogg DW and Johnson ZB, 1995. Selection of a mathematical model to generate lactation curves using daily milk yields of Holstein cows. Journal of Dairy Science78: 2507-2513.
Teixeira FRF, Nascimento M, Cecon PR, Cruz CD, Silva FF, Nascimento ACC, Azevedo CF, Marques DBD, da Silva MVGB, Carneiro APS and Paixão DM, 2021. Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models. Genetics and Molecular Research 20: 1-16.
Van Tassell CP and Van Vleck LD, 1996. Multiple-trait Gibbs sampler for animal model: flexible program for Bayesian and likelihood based (co)component inference. Journal of Animal Science 74: 2597-2586.
Wang CS, Rutledge JJ and Gianola D, 1994. Bayesian analysis of mixed linear model via Gibbs sampling with an application to litter size in Iberian pigs. Journal of Genetic Selection and Evolution 26: 91-103.
Wilmink JBM, 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livestock Production Science16: 335-348.
Wood PDP, 1967.  Algebraic model of lactation curve in cattle. Nature 216:164-165.