تجزیه و تحلیل مجموعه های ژنی جهت شناسایی ژن ها و مسیرهای زیستی مرتبط با صفات بیومتری در گوسفند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک.

2 استاد انستیتو علوم دامی، آکادمی علوم کشاورزی چین، پکن، چین.

چکیده

زمینه مطالعاتی: شناسایی ژن‌‌های بزرگ اثر مؤثر بر صفات مهم اقتصادی یکی از مهم‌‌ترین اهداف اصلاح نژادی در پرورش گوسفند است. هدف: پژوهش حاضر با هدف مطالعه پویش ژنومی بر اساس آنالیز مجموعه‌‌های ژنی برای شناسایی جایگاه‌‌های ژنی مؤثر بر وزن تولد و صفات بیومتری با استفاده از آرایه‌‌های ژنومی با تراکم بالا بوده است. روش‌ کار: بدین منظور از اطلاعات رکورد‌های فنوتیپی و ژنوتیپی مرتبط با وزن تولد (BW)، طول بدن، (BL) ارتفاع قد از جدوگاه (WH) و دور سینه (CG) 277 نمونه‌‌ از گوسفند لوزهانگ استفاده شد. ابتدا آنالیز پیوستگی برای وزن تولد و صفات بیومتری در برنامه GEMMA انجام شد. سپس با استفاده از بسته نرم افزاری biomaRt2 ژن‌های معنی‌داری که در داخل و یا 25 کیلوباز بالا و پایین دست نشانگرهای معنی‌دار قرار داشتند، شناسایی گردید. در نهایت تفسیر مجموعه ژنی با بسته نرم افزاری goseq برنامه R با هدف شناسایی عملکرد بیولوژیکی ژن‌‌های نزدیک به مناطق انتخابی و ژن‌‌های کاندیدا از طریق پایگاه‌‌های GO، KEGG، DAVID و PANTHER انجام شد. نتایج: در این پژوهش تعداد 14 نشانگر تک نوکلئوتیدی واقع روی کروموزوم‌‌‌های 2، 3، 5، 7، 11، 13، 17، 19، 20 و 25 شناسایی شدند که با ژن‌‌های ‌MYL1، MYL3، ACACA (BW)،‌PLCB1 ، BMPR1A، LRPPRC، PTBP1، TMEM117 (BL)، ADIPOR2، SYN3، TRAK1 (WH) و PPARG، HMGA1 (CG) مرتبط بودند. در تفسیر مجموعه ژنی تعداد 21 مسیر هستی شناسی ژنی و بیوشیمیایی با صفات وزن تولد و بیومتری شناسایی شد (P˂0.05). از این بین، مسیرهایmuscle structure development ، carbohydrate derivative metabolic process، anatomical structure formation involved in morphogenesis، skeletal system development، positive regulation of ossification، muscle cell proliferationو GnRH signaling pathway عملکرد‌های مهمی را در ارتباط با رشد و توسعه عضلات اسکلتی، هموستازی گلوکز، فرآیند استخوان‌سازی، تنظیم یون کلسیم و فعال‌سازی مسیر سیگنال‌دهی MAPK بر عهده داشتند. نتیجه ‌گیری نهایی: با توجه به تأیید نتایج حاصل از مطالعه قبلی در زمینه پویش ژنومی وزن تولد و صفات بیومتری و شناسایی مناطق ژنومی جدید استفاده از یافته‌های این تحقیق می‌تواند در انتخاب ژنتیکی برنامه‌های اصلاح نژادی گوسفند مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Gene-set enrichment analysis to identify genes and biological pathways associated with Biometric traits in sheep

نویسندگان [English]

  • Hossein Mohammadi 1
  • mingxing chu 2
1 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Environmental Science, Arak University
2 Professor, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
چکیده [English]

Abstract
Introduction:
Genomic selection has provided the sheep industry with a powerful tool to increase genetic gains on economically important traits such as meat production (Taylor et al. 2016). In addition identifying genes with large effects on economically important traits, has been one of the important goals in sheep breeding. One way to identify new loci and confirm existing QTL is through genome-wide association studies (GWAS). QTL assisted selection and genomic regions affecting the production traits have been considered to increase the efficiency of selection and improve production performance. Genome wide association studies typically focus on genetic markers with the strongest evidence of association. However, single markers often explain only a small component of the genetic variance and hence offer a limited understanding of the trait under study. A solution to tackle the aforementioned problems, and deepen the understanding of the genetic background of complex traits, is to move up the analysis from the SNP to the gene and gene-set levels. In a gene-set analysis, a group of related genes that harbor significant SNP previously identified in GWAS, is tested for over-representation in a specific pathway. The present study aimed to conduct a genome wide association studies (GWAS) based on Gene-set enrichment analysis for identifying the loci associated with birth weight and biometric traits using the high-density SNPs.
Materials and methods:
Phenotypes records and genotypic data related to birth weight, body length, withers height and chest girth were obtained from 277 Luzhong sheep. The gene set analysis consists basically in three different steps: the assignment of SNPs to genes, the assignment of genes to functional categories, and finally the association analysis between each functional category and the phenotype of interest. Genome wide association study was performed with birth weight and biometric traits using GEMMA software. Using the biomaRt2 R package the SNP were assigned to genes if they were within the genomic sequence of the gene or within a flanking region of 25 kb up- and downstream of the gene. For the assignment of the genes to functional categories, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were used. The GO database designates biological descriptors to genes based on attributes of their encoded products and it is further partitioned into 3 components: biological process, molecular function, and cellular component. The KEGG pathway database contains metabolic and regulatory pathways, representing the actual knowledge on molecular interactions and reaction networks. Finally, a Fisher’s exact test was performed to test for overrepresentation of the significant genes for each gene-set. The gene enrichment analysis was performed with the goseq R package. In the next step, a bioinformatics analysis was implemented to identify the biological pathways performed in BioMart, Panther, DAVID and GeneCards databases.
Results and discussion:
Gene set enrichment analysis has proven to be a great complement of genome-wide association analysis (Gambra et al., 2013; Abdalla et al., 2016). Among available gene set databases, GO is probably the most popular, whereas KEGG is a relatively new tool that is gaining ground in livestock genomics (Morota et al., 2015, 2016). We had hypothesized that the use of gene set information could improve prediction. However, neither of the gene set SNP classes outperformed the standard whole-genome approach. Gene sets have been primarily developed using data from model organisms, such as mice and flies, so it is possible that some of the genes included in these terms are irrelevant for meat production. It is likely that a better understanding of the biology underlying meat production specifically, plus an advance in the annotation of the ovine genome, can provide new opportunities for predicting production using gene set information.
In this research, 14 SNP markers on chromosomes 2, 3, 5, 7, 11, 13, 17, 19. 20 and 25 located in MYL1, MYL3, ACACA (birth weight), PLCB1, BMPR1A, LRPPRC, PTBP1, TMEM117 (body length), ADIPOR2, SYN3, TRAK1 (withers height) and PPARG, HMGA1 (chest girth) genes were identified. Some of the genes that were found are consistent with some previous studies related to birth weight and biometric traits. According to pathway analysis, 21 pathways from gene ontology and biological pathways were associated with the birth weight and biometric traits (P˂0.05). Among these pathways, muscle structure development, carbohydrate derivative metabolic process, anatomical structure formation involved in morphogenesis, skeletal system development, positive regulation of ossification, muscle cell proliferation and GnRH signaling pathway have important functions in development of skeletal muscle, glucose homeostasis, osteogenesis process, regulation of ion calcium and activation of the MAPK signaling pathway. Finally, it is worth noting that our gene-set enrichment analysis was conducted using a panel of SNP obtained from a single marker regression GWAS, which relies on a simplified theory of the genomic background of traits, without considering for instance the joint effect of SNP. Hence, other approaches (e.g., GWAS exploring SNP by SNP interactions) might provide a better basis for biological pathway analysis.
Conclusions
In total, this study supported previous results from GWAS of birth weight and biometric traits, also revealed additional regions in the sheep genome associated with these economically important traits, using these findings could potentially be useful for genetic selection in the breeding programs.
Conclusions
In total, this study supported previous results from GWAS of birth weight and biometric traits, also revealed additional regions in the sheep genome associated with these economically important traits, using these findings could potentially be useful for genetic selection in the breeding programs.
In total, this study supported previous results from GWAS of birth weight and biometric traits, also revealed additional regions in the sheep genome associated with these economically important traits, using these findings could potentially be useful for genetic selection in the breeding programs.

کلیدواژه‌ها [English]

  • Body conformation
  • Genome scan
  • Gene ontology
  • Pathway-based analysis
Abbasi MA and Ghafouri-Kesbi F, 2011. Genetic co (variance) components for body weight and body measurements in Makooei sheep. Asian-Australian Journal of Animal Science 24: 739-743.
Abdalla IM, Lu X, Nazar M, Fan Y, Zhang Z, Wu X, Xu T and Yang Z, 2021. Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows. Animals (Basel) 11(7):1927. 
Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, Plastow G, Stothard P, Nayeri S and Schenkel FS, 2017. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genetic Selection Evolution 49(1):82.
An B, Xu L, Xia J, Wang X, Miao J, Chang T, Song M, Ni J, Xu L, Zhang L, Li J and Gao H, 2020. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genetics 21(1):32.
An B, Xia J, Chang T, Wang X, Xu L, Zhang L, Gao X, Chen Y, Li J and Gao H, 2019. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Animal Genetics 50(4): 386-390. 
Azizpour N, Khaltabadi Farahani AH, Moradi MH and Mohammadi H, 2020. Genome-wide association study based on gene-set enrichment analysis associated with milk yield in Holstein cattle. Journal of Animal Science Researches 30(1): 79-91 (In Persian).
Coudert E, Praud C, Dupont J, Crochet S, Cailleau-Audouin E, Bordeau T, Godet E, Collin A, Berri C, Tesseraud S and Métayer-Coustard S, 2018. Expression of glucose transporters SLC2A1, SLC2A8, and SLC2A12 in different chicken muscles during ontogenesis. Journal of Animal Science 96(2): 498-509.
Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Walsh SW, Evans RD and Purfield DC, 2020. Genomic Regions Associated With Skeletal Type Traits in Beef and Dairy Cattle Are Common to Regions Associated With Carcass Traits, Feed Intake and Calving Difficulty. Frontiers in Genetics 11:20.
 
Durinck S, Spellman PT, Birney E and Huber W, 2009. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nature Protocols 4: 1184–1191.
Esmaeili-Fard SM, Gholizadeh M, Hafezian SH and Abdollahi-Arpanahi R, 2021. Genes and Pathways Affecting Sheep Productivity Traits: Genetic Parameters, Genome-Wide Association Mapping, and Pathway Enrichment Analysis. Frontiers in Genetics 12:710613.
Hong Y, Ye J, Dong L, Li Y, Yan L, Cai G, Liu D, Tan C and Wu Z, 2021. Genome-Wide Association Study for Body Length, Body Height, and Total Teat Number in Large White Pigs. Frontiers in Genetics 12:650370.
Hinrichs AL, Larkin EK and Suarez BK, 2009. Population Stratification and Patterns of Linkage Disequilibrium. Genetic Epidemiology 33: 88-92.
Huang S, He Y and Ye S, 2018. Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array. Journal of Applied Genetics 59: 335-344.
Kominakis A, Hager-Theodorides AL, Zoidis E, Saridaki A, Antonakos G and Tsiamis G, 2017. Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep. Genetic Selection Evolution 49(1):41.
Khaltabadi Farahani AH, Mohammadi and Moradi MH, 2020. Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production 22(3):325-335 (In Persian).
Le TH, Christensen OF, Nielsen B and Sahana G, 2017. Genome-wide association study for conformation traits in three Danish pig breeds. Genetic Selection Evolution 49(1):12.
Makina SO, Muchadeyi FC, Van Marle-Köster E, Taylor JF, Makgahlela ML and Maiwashe A, 2015. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genetic Selection Evolution 47:14.
Mandal A, Roy R and Rout PK, 2008. Direct and maternal effects for body measurements at birth and weaning in Muzaffarnagari sheep of India. Small Ruminant Research 75: 123-127.
Mohammadi H and Sadeghi M, 2010. Estimation of Genetic Parameters for Growth and Reproduction Traits and Genetic Trends of Growth Traits in Zel Sheep Breed under Rural Production System. Iranian Journal of Animal Science 41(3):231-241. (In Persian).
Mohammadi H, Rafat SA, Moradi Shahrbabak H, Shodja J and Moradi MH, 2020. Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies 8(2): 45-55.
Najafi MH, Mohammadi Y, Najafi A, Shamsolahi M and Mohammadi H, 2020. Lairage time effect on carcass traits, meat quality parameters and sensory properties of Mehraban fat-tailed lambs subjected to short distance transportation. Small Ruminant Research 188:106122.
Ouyang H, Wang Z, Chen X, Yu J, Li Z and Nie Q, 2017. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Frontiers Physiology 8: 281-289.
Peñagaricano F, Weigel KA, Rosa GJ and Khatib H, 2013. Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers Genetics 3: 307-314.
Park JW, Lee JH, Kim SW, Han JS, Kang KS, Kim SJ and Park TS, 2018. Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts. Asian-Australas Journal of Animal Science 31(9): 1507-1515.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR and Bender D, 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics 81: 559-575.
Peng G, Luo L and Siu H, 2010. Gene and pathway-based second wave analysis of genome-wide association studies. European Journal of Human Genetics 18: 111–117.
Pértille F, Moreira GC and Zanella R, 2017. Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Scientific Reports 7:41748.
Puig-Oliveras A, Ballester M, Corominas J, Revilla M, Estellé J, Fernández AI, Ramayo-Caldas Y and Folch JM, 2014. A co-association network analysis of the genetic determination of pig conformation, growth and fatness. PLoS One 9(12):e114862. 
Shin, SC, Heo J and Chung L, 2011. Effect of Single Nucleotide Polymorphisms of Acetyl-CoA Carboxylase α (ACACA) Gene on Carcass Traits in Hanwoo (Korean Cattle). Asian-Australasian Journal of Animal Sciences 24)6): 744–751.
Srikanth K, Lee SH, Chung KY, Park JE, Jang GW, Park MR, Kim NY, Kim TH, Chai HH, Park WC and Lim D, 2020. A Gene-Set Enrichment and Protein-Protein Interaction Network-Based GWAS with Regulatory SNPs Identifies Candidate Genes and Pathways Associated with Carcass Traits in Hanwoo Cattle. Genes (Basel) 11(3):316.
Resnyk CW, Chen C, Huang H, Wu CH, Simon J, Le Bihan-Duval E, Duclos MJ and Cogburn LA, 2015. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism. PLoS One 9­(10):e0139549.
Tao L, He XY, Pan LX, Wang JW, Gan SQ and Chu MX, 2020. Genome-wide association study of body weight and conformation traits in neonatal sheep. Animal Genetics 51(2): 336-340.
Veerkamp RF, Coffey MP, Berry DP, de Haas Y, Strandberg E, Bovenhuis H, Calus MPL and Wall E, 2012. Genome-wide associations for feed utilization complex in primiparous Holstein-Friesian dairy cows from experimental research herds in four European countries. Animal 6: 1738–1749.
Wang L, Jia P and Wolfinger RD, 2011. Gene set analysis of genome-wide association studies: Methodological issues and perspectives. Genomics 98: 1–8.
Wang S, Dvorkin D and Da Y, 2012. SNPEVG: a graphical tool for GWAS graphing with mouse clicks. BMC Bioinformatics 13:319.
Young MD, Wakefield MJ, Smyth GK and Oshlack A, 2010. Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology 11:14-23.
Zhou X and Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44:821.