بررسی منحنی تغییرات درصد چربی و درصد پروتئین و نسبت چربی به پروتئین در رکوردهای شیر روز آزمون گاوهای شیری ایران با استفاده از تکنیک آماری رگرسیون کوآنتایل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه بخش علوم دام دانشگاه بیرجند

چکیده

زمینه‌ی مطالعه: میزان تولید گاو در اوج تولید شیر، به‌جیره‌ی غذایی بعد از زایمان، توانایی ژنتیکی، شرایط بدنی حیوان در هنگام زایمان، نداشتن بیماری‌های عفونی و متابولیکی، بستگی دارد. نسبت چربی به پروتئین در رکوردهای شیر روز آزمون، سنجه‌ای کاربردی در رابطه با میزان سوخت و ساز چربی‌های بدن و میزان تعادل منفی انرژی است و می‌توان از آن
به‌عنوان سنجه‌ی انتخاب، در جهت بهبود پایداری متابولیکی گاوهای شیری استفاده نمود. هدف: این تحقیق، با هدف بررسی منحنی تغییرات درصد چربی، درصد پروتئین و نسبت چربی به پروتئین در رکوردهای شیر روز آزمون گاوهای شیری ایران و با استفاده از رگرسیون چندجمله‌ای کوآنتایل اجرا گردید. روش ‌کار: تعداد 784532 رکورد روز آزمون متعلّق به 93259 رأس گاو شیری شکم اوّل در 660 گله که طیّ سال‌های 1382 الی 1392 زایش داشتند، توسّط مرکز اصلاح نژاد دام و بهبود تولیدات دامی جمع‌آوری و مورد استفاده قرار گفت. صفت مورد بررسی، درصد چربی و درصد پروتئین و نسبت (درصد یا مقدار) چربی به پروتئین در رکوردهای شیر روز آزمون بود. مدل رگرسیون چندجمله‌ای کوآنتایل، توسّط
نرم‌افزار SAS بر میانگین رکوردها برازش داده شد که در آن، روز شیردهی، به‌عنوان متغیّر مستقل و هر یک از صفات مذکور به‌عنوان متغیّر پاسخ معرفی شدند. نتایج: گرچه بیشترین مقدار نسبت چربی به پروتئین در ماه‌های اوّل و دوّم شیردهی، و کمترین مقدار آن در ماه‌های ششم و هفتم دوره‌ی شیردهی مشاهده گردید، امّا به‌دلیل متفاوت بودن ضریب تابعیّت خطی و درجه دوّم روز شیردهی، بیشترین و کمترین مقدار صفت مزبور، در چندک‌های مختلف، تغییرات داشت؛
به‌گونه‌ای که بر حسب قدر مطلق مقادیر، کوچکترین و بزرگترین ضریب تابعیّت خطی روز شیردهی، به‌ترتیب در چندک‌های 5 و 95 مشاهده شد. مشابه با وضعیّت مزبور نیز برای ضریب تابعیّت درجه دوّم روز شیردهی به‌دست آمد. نتیجه‌گیری نهایی: یافته‌های تحقیق حاضر، نشان داد شیب بالارونده و پایین‌رونده منحنی تغییرات درصد چربی، درصد پروتئین و نسبت چربی به پروتئین در طول دوره‌ی شیردهی گاوهای شیری ایران، در چندک‌های مختلف از صفات مزبور، متفاوت است؛ و لذا توصیّه می‌شود که این تفاوت، در مدیریّت تغذیه و سلامت همچنین برنامه‌‌ی‌ اصلاح نژادی گاوهای شیری مورد توجّه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique

نویسندگان [English]

  • morteza namjou
  • homayoon farhangfar
MSc Graduated, university of birjand
چکیده [English]

A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique

Abstract
Introduction: While the physiological conditions of most animals are reflected in their body fluids, in dairy cows physiological conditions are reflected in milk combinations. When negative energy balance occur, production that caused body fat store destruction, goes in two major metabolic ways in liver and breast tissues. In breast tissues, free fatty acids increase fat to protein ratio and in liver, free fatty acid change metabolism leading to increase of ketone bodies. Lactation persistency in dairy cows is one of inheritable economic trait and important characteristic of the lactation curve. The change of this trait is under control of different factors such as animal genetics structure. The amount of cow production at the peak of milk production depends on the calving physical condition, genetics, the absence of infectious and metabolic diseases, and postpartum diet. Fat to protein ratio in early lactation is associated with performance during lactation. Fat to protein ratio is also correlated with some diseases such as retained placenta, displacement of abomasum, metritis, endometritis, mastitis and culling. Fat to protein ratio (FPR) in test day milk records is a good indicator for body fat metabolism and the level of negative energy balance, and that it could be used as a selection criterion to improve metabolic stability. Objective: Quantile regression has not been widely used for modeling of biologic characteristics of livestock and this research aimed to evaluate the shape of fat percentage, protein percentage and FPR in test day milk records of Iranian dairy cows using a polynomial quantile regression model. Material and methods: The data used in this study were provided by the Animal Breeding Centre, Iran. Initial data set were edited by Excel and Foxpro software. The traits under consideration were fat percentage, protein percentage and fat to protein ratio (calculated based on the magnitude of the first two traits). All cows had value for all traits. Final data comprised a total of 784,532 test day records collected from 93,259 first-parity dairy cows (progeny of 2741 sires and 79843 dams) distributed in 660 herds over the country and calved between 2003 and 2013. In the data, test day fat percentage and protein percentage had a minimum of 1 and 1.5 and a maximum of 7 and 7, respectively. By SPSS software, some statistical characteristics of the traits were calculated, and by SAS software a quadratic polynomial quantile regression model (in the range of quantiles 5 to 95) was fitted to the data. Based upon the fitted model, linear and quadratic regression coefficients were estimated for the effect of day of lactation on each trait in different quantiles. In the model, traits and day of lactation were response and independent variables, respectively. Quadratic effect of day of lactation is considered due to nonlinear variation of the traits over the course of the lactation curve. Results and discussion: Mean fat percentage, protein percentage and fat to protein ratio over the lactation course were found to be 3.35%, 3.08% and 1.1, respectively. As expected, for each trait a nonlinear change was observed over the lactation period. The highest content fat to protein ratio occurs in the early period of lactation and the lowest was observed in the sixth and seventh months of lactation. In terms of absolute values, minimum (953.564) and maximum (1797.661) linear regression coefficient of days in milk were obtained in quantiles 5 and 95, respectively. The same trend was also observed for quadratic regression coefficient of days in milk. Linear and quadratic regression coefficients of fat and protein percentages ranged over different quantiles so that minimum and maximum absolute values were observed in quantiles 5 and 95, respectively. Conclusion: Quantile regression model is an appropriated statistical technique for evaluate the effects of an independent factor which differently affects the shape of a response variable. In this research, the effect of days in milk on three traits (fat and protein percentage, as well as fat to protein ratio) was modeled by quantile regression. The findings of the present research indicate that the curve shape of fat percentage, protein percentage and fat to protein ratio are different for the quantiles suggesting that these differences are needed to be taken into account in nutrition management and cattle breeding scheme.
Keywords: Dairy cow, Modeling, Quantile regression, Ratio of milk composition
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique
A study on the curve of far percentage, protein percentage and fat to protein ratio in test day milk records of Iranian dairy cows using quantile regression statistical technique

کلیدواژه‌ها [English]

  • Dairy cow
  • Modeling
  • Quantile regression
  • Ratio of milk composition
Bahri Binabaj F, Farhangfar SH and Jafari M, 2021. Inbreeding affected differently on observations distribution of a growth trait in Iranian Baluchi sheep. Animal Bioscience 24:506-515.
Bauman DE and Griinari JM, 2003.Nutritional regulation of milk fat syndrome. Annual Review of Nutrition 23:203-227.
Bauman DE, Perfield JW, Harvatine KJ and Baumgard LH, 2008. Regulation of fat synthesis by conjugated linoleic acid: Lactation and the ruminant model. Journal Nutrition 138:403-409.
Bostan A, Moradi Shahrbabak MV and Nejati Javaromi A, 2010.Comparison of different functions for estimating lactation curve area in different parts of first and second lactation of Holstein cows using test day records. Iranian Journal of Animal science 41:73-80. (In Persian)
Buttchereit N, Stamer E, Junge W and Thaller G, 2010. Evaluation of five lactation curve models fitted for fat:protein ratio of milk and daily energy balance. Journal of Dairy Science 93:1702-1712.
Buttchereit N, Stamer E, Junge W and Thaller G, 2012. Genetic parameters for energy balance, fat/protein ratio, body con­dition score and disease traits in German Holstein cows. Journal of Animal Breeding and Genetics 129:280–288.
Buttchereit N, Stamer E, Junge WT and Thaller G, 2011. Genetic relationships among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. Journal of Dairy Science 94:1586-1591.
Coffey MP, Emmans GC and Brotherstone S, 2001. Genetic evaluation of dairy bulls for energy balance traits using random regression. Journal of Animal Science 73:29–40.
De Marchi M, Toffanin V, Cassandro M and Penasa M, 2014. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. Journal of Dairy Science 97(3): 1171-1186.
DePeters EJ and Cant JP, 1992. Nutritional factors influencing the nitrogen composition of bovine milk: A review. Journal of Dairy Science 75(8): 2043-2070.
Drackley JK, 1999. Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 82:2259-2273.
Farhangfar H, 2012. Logistic analysis of lactation stage influence on probability of milk fat depression in Iranian Holstein cows. Animal Production Research 1:21-31. (In Persian)
Ferris TA, Mao IL and Anderson CR, 1985. Selecting for lactation curve and milk yield in dairy cattle. Journal of Dairy Science 68:1438-1448.
Friggens NC, Ridder C and Lovendahl P, 2007. On the use of milk composition measures to predict the energy balance of dairy cows. Journal of Dairy Science 90:5453-5467.
Ghavi Hossein-Zadeh N, 2016. Modelling lactation curve for fat to protein ratio in Holstein cows. Animal Science Papers and Reports 34:233-246.
Ghorbani GH and Khosraviniya HA, 2011. Principles of Dairy science (second edition). Nashr Press, University of Esfehan. (In Persian)
Gurtler H and Schweiger FJ, 2005.Physologie der Laktation. In: W. von Engelhard, C. Breves (ed.), Physologie der Haustiere. Vol. 2. EnkeVerlag, Stuttgart, Germany, pp. 552-573.
Gwazdauskas FC, Thatcher WW and Wilcox CJ, 1973. Physiological, environmental, and hormonal factors at insemination which may affect conception. Journal of Dairy Sciences 56(7): 873-877.
Hamann J and Kromker V, 1997. Potential of specific milk composition variables for cow health management. Livestock Production Science 48(3): 201-208.
Heinriches J and Jones C, 2017. Milk components: understanding the causes and importance of milk fat and protein variation in your dairy herd. Web Address: http://extension.psu.edu/animals/dairy/nutrition/nutrition-and-feeding/diet-formulation-and-evaluation.
ICAR, 2017. Guidelines for Dairy Cattle Milk Recording. Section 2 - Cattle Milk Recording, p. 27.
Jamrozik J and Schaeffer LR, 2012. Test-day somatic cell score, fat-to-protein ratio and milk yield as indicator traits for sub-clinical mastitis in dairy cattle. Journal of Animal Breeding and Genetics 129:11-19.
Kirovski D, 2011. Evaluation of energy status of dairy cows using milk fat, protein and urea concentration. Macedonian Veterinary Review 34:39-45.
Koeck A, Miglior F, Jamrozik J, Kelton DF and Schenkel FS, 2013. Genetic associations of ketosis and displaced abomasum with milk production traits in early first lac­tation of Canadian Holsteins. Journal of Dairy Science 96:4688–4696.
Koenker R, and Bassett GW, 1978. Regression Quantiles. Econometrica 46:33-50.
Lotfi S, Lotfi R, Vahidiyan Kamyad A, and Farhangfar H, 2014. Application of sinus function for modelling of lactation curve of Holstein cows and its comparison with Wood and Dijkstra functions in a Holstein herd. Iranian Journal of Animal science 45:59-68. (In Persian)

Moghadam M, Farhangfar H, Bashtani M and Eghbal AR, 2013. Logistic analysis of some factors affecting on milk far syndrome disorder of early lactating Iranian Holstein cows. Animal Production 15:79-88. (In Persian)

Namjou M, Farhangfar H, Bashtani M and Eghbal AR, 2016. Assessment of the impacts of different factors on the occurrence of negative energy balance in Iranian dairy cows using a logistic generalised linear model. Journal of Ruminant Research 4:93-116. (In Persian)
Negussie E, Standen I and Mantysaari EA, 2013. Genetic associations of test-day fat:protein ratio with milk yield, fertility, and udder health traits in Nordic Red cattle. Journal of Dairy Science 96:1237-1250.
Nishiura A, Sasaki O, Aihara M, Takeda H and Satoh M, 2015. Genetic analysis of fat-to-protein ratio, milk yield and somatic cell score of Holstein cows in Japan in the first three lactations by using a random regression model.  Journal of Animal Science 86:961-969.
Olson KM, Cassell BG and Hanigan MD, 2010. Energy bal­ance in first-lactation Holstein, Jersey, and reciprocal F1 crossbred cows in a planned crossbreeding experiment. Journal of Dairy Science 93: 4374–4385.
Plaizier JC, Krause DO, Gozho GN and McBride BW, 2008.Subacuteruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary Journal 176:21-31.
Rodriguez M, Hultgren J, Båge1 RA, Bergqvist S, Svensson G, Bergsten G, Lidfors L, Gunnarsson S, Algers B, Emanuelson U, Berglund B, Anderson G, Håård A, Lindhé B, Stålhamma B and Gustafsso., H Stålhammar5 & H Gustafsson6 H, 2008. Reproductive performance in high-producing dairy cows: Can we sustain it under current practice? 108:1-23.
Samore AB, Rizzi R, Rossoni A and Bagnato A, 2010. Ge­netic parameters for functional longevity, type traits, somatic cell scores, milk flow and production in the Italian Brown Swiss. Italian Journal of Animal Science 9: 145–152.
Saranjam N, Farhoodi M, Akbari M and Farzaneh N, 2019. Association of postpartum milk fat, protein and fat-to-protein ratio with 120 days pregnancy risk in Holstein dairy cows. Veterinary Clinical Pathology 13(15): 291-303.
Toni F, Vincenti L, Grigoletto L, Ricci A and Schukken YH, 2011. Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival. Journal of Dairy Science 94:1772-1783.
Wood PDP, 1967. Algebraic model of the lactation curve in cattle. Nature 216:164-165.
Zink V, Lassen J and Stipkova M, 2012. Genetic parameters for female fertility and milk production traits in first-parity Czech Holstein cows. Czech Journal of Animal Science 57:108-114.
Zink V, Zavadilová L, Lassen J, Štípková M, Vacek M and Štolc L, 2014. Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows. Czech Journal of Animal Science 59(12):539-547.
Zoche-Golob V, Heuweiser W and Kromker V, 2015. Investigation of the association between the test day milk fat-protein ratio and clinical mastitis using a Poisson regression approach for analysis of time-to-event data. Preventive Veterinary Medicine 121:64-73.