اثر متفورمین بر عملکرد تولید و صفات کیفی تخم‌مرغ در مرغان تخمگذار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشگاه تبریز

2 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تبریز

چکیده

چکیده
زمینه مطالعاتی: این مطالعه به منظور بررسی اثر داروی متفورمین بر عملکرد تولید، صفات کیفی خارجی و صفات کیفی داخلی تخم مرغ در مرغان تخم گذار در انتهای دوره تولید انجام شد. تعداد 64 قطعه مرغ تخمگذار نژاد لگهورن سویه های‌لاین - W36 در سن 73 هفتگی در این آزمایش استفاده شد. روش کار: مرغ‌ها در قالب یک طرح کاملاَ تصادفی به 4 تیمار (سطوح 0، 50، 100 و 150 میلی گرم در کیلوگرم وزن بدن داروی متفورمین) و چهار تکرار و چهار قطعه مرغ در هر تکرار تخصیص یافتند. نتایج: نتایج آزمایش نشان داد که شاخص‌های عملکرد تولید شامل میزان تولید تخم مرغ، توده تخم مرغ، وزن تخم مرغ، درصد تخم مرغ‌های لمبه، ضریب تبدیل خوراک، بازدهی خوراک، وزن نهایی مرغ‌ها و افزایش وزن مرغ‌ها تحت تأثیر تیمارهای آزمایشی قرار نگرفت. مرغ‌های گروه شاهد کمترین درصد تخم مرغ‌های شکسته را داشتند (05/0>P). شاخص شکل، وزن پوسته، شاخص تخم مرغ، واحد هاو، ضخامت پوسته، و دانسیته تخم مرغ، بین تیمارها تفاوت نداشت. pH سفیده، واحد هاو، ارتفاع زرده، عرض زرده، وزن زرده، درصد سفیده، درصد زرده، نسبت زرده به سفیده، شاخص زرده ، pH زرده و رنگ زرده در انتهای آزمایش تحت تأثیر تیمارهای آزمایشی قرار نگرفت. نتیجه گیری نهایی: به طور کلی استفاده از داروی متفورمین در این آزمایش نتوانست اثر مثبتی روی عملکرد و خصوصیات کیفی تخم مرغ داشته باشد.
کلمات کلیدی: متفورمین، عملکرد تولید، صفات کیفی تخم مرغ، مرغان تخم گذار


مقدمه
مرغ‌های تخمگذار برای اینکه بتوانند یک توالی (کلاچ) از تخم‌ها تولید کنند، باید گروه کوچکی از فولیکول های زنده و تمایز نیافته را داشته باشند و روزانه یک فولیکول تمایز نیافته از این گروه به محل تجمع پیش از تخمک‌گذاری فولیکول‌ها وارد شده و قبل از تخمک-گذاری تحت رشد و تمایز سریع قرار می‌گیرد (جانسون 2015). تخمگذاری در مرغ در انتهای تولید، به دلایل متعددی قطع می گردد. محرک‌های خارجی و داخلی سطوح هورمونی بدن مرغ را تحت تاثیر قرار می‌دهند که موجب تغییر شرایط حاکم بر اندام‌های تخمگذاری (تخمدان و اویدوکت ) می شود که این تغییرات موجب کاهش و یا توقف تولید تخم می‌گردند. با آغاز فرآیند پیری در مرغ‌های تخمگذار، کاهش سریعی در میزان تخم‌گذاری اتفاق می‌افتد، به طوری که در سن 80 هفتگی، تولید تخم در مرغ ها به طور معنی‌داری افت کرده و عملکرد تخمدان آنها به طور قابل توجهی کاهش می‌یابد )مولنار، 2016؛ لیو، 2018). تسریع در از دست دادن فولیکول‌های تمایز نیافته در تخمدان مسن، افزایش زوال فولیکو‌ل‌های تمایز نیافته‌ و کاهش ظرفیت تشکیل پیش‌ساز زرده در کبد و در نتیجه کاهش ذخیره زرده در فولیکول‌های تمایز نیافته، دلایلی هستند که سبب کاهش تولید تخم در مرغ‌های مسن می‌شوند (لیلپرز و ویلهلمسون، 1993). از این‌رو ممانعت از آترزی فولیکولی و یا به تعویق انداختن آن برای حفظ تولید در سطح بالا ضروری است.
پژوهش‌های مختلفی در مورد نقش پیامهای هورمونی- عصبی بر تخمکریزی انجام شده است ( وزینا و همکاران، 2003؛ پراسد و همکاران، 2007؛ ابید و همکاران، 2008). در پرندگان و سایر مهره‌داران تخمگذار، هورمون‌های محور هیپوتالاموس- هیپوفیز- گوناد‌ها اعمال تخمدان را تنظیم می‌کنند (پراسد و همکاران، 2007). باروری توسط نورون‌های هیپوتالاموسی ترشح کننده هورمون آزاد کننده گنادوتروپین (GnRH) کنترل می‌شود. ترشح هورمون آزاد کننده گنادوتروپین از این نورونـها موجب تحریک آزاد سازی هورمون لوتئینه کننده LH)) و هورمون محرک فولیکولی (FSH) از هیپوفیز می‌شود. نورون‌های هورمون آزاد کننده گنادوتروپین به محرک‌های بی‌شماری از جمله سیگنال-های متابولیک محیطی مانند گلوکز و لپتین پاسخگو هستند (پال و همکاران، 2007، گامبا و همکاران، 2006).
متفورمین دارویی است که برای درمان لاکتون دام‌ها مورد استفاده قرار می‌گیرد (بایلی و دی، 2004). گزارش‌هایی در مورد آهسته شدن سرعت پیری تحت تأثیر متفورمین وجود دارد (کین و همکاران، 2019). همچنین گزارش شده است که متفورمین به واسطه ممانعت از مرگ فولیکول‌ها و نگهداری ذخایر فولیکولی، فرآیند پیری تخمدان در موش‌ها را به تأخیر می‌اندازد و علاوه بر آن متفورمین می‌تواند استرس اکسیداتیو تخمدانی و تولید اجسام اکسیژنی واکنشگر (ROS) در میتوکندری را تخفیف دهد (باتاندیر و همکاران، 2006؛ کای و همکاران، 2020).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of metformin on production performance and egg quality traits in laying hens

نویسندگان [English]

  • Hatam Hatami 1
  • Marziyeh Ebrahimi 1
  • Hossein Daghigh Kia 1
  • Hosein janmohammadi 1
  • Davoud Kianifard 2
1 Ph.D. student of the department of Animal Science, University of Tabriz
2 Associate professor, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Iran
چکیده [English]

Introduction: Metformin is used in the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. Metformin affects the release of GnRh and LH hormones by regulating the reproductive axis (Tosca et al. 2011). It has been shown that patients with polycystic ovaries who ovulate under metformin treatment have an improvement in ovarian artery blood flow and better dominant follicle and corpus luteum angiogenesis (Palumba et al. 2006). Egg laying in chickens is stopped at the end of production for several reasons. External and internal stimuli affect the hormonal levels of the hen's body, which causes changes in the conditions governing the laying organs (ovaries and oviducts), and these changes cause a decrease or stop of egg production. The purpose of using metformin in the diet of laying hens is to reduce the fat around the ovary, so that it can exert its positive effects (Toska et al. 2011). Chen et al. (2011) in Hy-Line laying Leghorn hens that received 30 or 100 mg/kg body weight of metformin significantly reduced egg laying rate, plasma triglyceride, cholesterol and insulin levels, body weight, abdominal fat, and liver fat content (Chen et al., 2011). In order to reduce fat reserves and improve egg laying at the end of production, this study was conducted in order to investigate the effect of metformin on production performance, external and internal quality traits of eggs in laying hens at the end of the production period (choosing the last weeks of production was due to reduced production and accumulation of abdominal fat)
Material and methods: The number of 64 laying hens of Leghorn breed HyLine-W36 at the 73 weeks of age were used in this experiment. The hens were allocated to 4 treatments (levels of 0, 50, 100 and 150 mg/kg body weight of Metformin) and four replicates with four birds in each replicate in a completely random design during 8 weeks of the experiment. In order to adapt to experimental diet and conditions, one week adaptation period was also done. Egg production performance including hen-day egg production, egg weight, egg mass, were recorder daily and feed intake of birds were measured and the feed conversion ratio (FCR) was calculated. At the beginning and end of the experiment, egg quality traits (egg length, egg diameter, shell weight, egg index, haugh unit, egg shell thickness, egg density, albumin weight, albumin pH, yolk height, yolk diameter, yolk weight, yolk pH, and yolk color) were evaluated and reported.
Results and discussion: The results of the experiment indicated that the production performance parameters including egg production, egg mass, egg weight, percentage of soft shell eggs, feed conversion ratio, feed efficiency, final weight of hens and weight gain of hens were not affected by treatments. Hens in the control group had the lowest percentage of cracked eggs (P<0.05). Egg length, egg width, shell weight, egg index, haugh unit, wide end shell thickness, middle shell thickness and egg density were not differed between treatments at the beginning and end of the experiment. The highest thickness of the thin end shell, both at the end of the experiment, was related to hens receiving metformin drug at 100 mg/kg body weight (P<0.05). Albumin height, albumin weight, albumin pH, yolk height, yolk width, yolk weight, yolk pH, and yolk color were not affected by experimental treatments at the end of the experiment. In general, the use of metformin drug in this experiment, could not have a positive effect on the performance and quality characteristics of eggs.

Introduction: Metformin is used in the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. Metformin affects the release of GnRh and LH hormones by regulating the reproductive axis (Tosca et al. 2011). It has been shown that patients with polycystic ovaries who ovulate under metformin treatment have an improvement in ovarian artery blood flow and better dominant follicle and corpus luteum angiogenesis (Palumba et al. 2006). Egg laying in chickens is stopped at the end of production for several reasons. External and internal stimuli affect the hormonal levels of the hen's body, which causes changes in the conditions governing the laying organs (ovaries and oviducts), and these changes cause a decrease or stop of egg production. The purpose of using metformin in the diet of laying hens is to reduce the fat around the ovary, so that it can exert its positive effects (Toska et al. 2011). Chen et al. (2011) in Hy-Line laying Leghorn hens that received 30 or 100 mg/kg body weight of metformin significantly reduced egg laying rate, plasma triglyceride, cholesterol and insulin levels, body weight, abdominal fat, and liver fat content (Chen et al., 2011). In order to reduce fat reserves and improve egg laying at the end of production, this study was conducted in order to investigate the effect of metformin on production performance, external and internal quality traits of eggs in laying hens at the end of the production period (choosing the last weeks of production was due to reduced production and accumulation of abdominal fat)
Material and methods: The number of 64 laying hens of Leghorn breed HyLine-W36 at the 73 weeks of age were used in this experiment. The hens were allocated to 4 treatments (levels of 0, 50, 100 and 150 mg/kg body weight of Metformin) and four replicates with four birds in each replicate in a completely random design during 8 weeks of the experiment. In order to adapt to experimental diet and conditions, one week adaptation period was also done. Egg production performance including hen-day egg production, egg weight, egg mass, were recorder daily and feed intake of birds were measured and the feed conversion ratio (FCR) was calculated. At the beginning and end of the experiment, egg quality traits (egg length, egg diameter, shell weight, egg index, haugh unit, egg shell thickness, egg density, albumin weight, albumin pH, yolk height, yolk diameter, yolk weight, yolk pH, and yolk color) were evaluated and reported.
Results and discussion: The results of the experiment indicated that the production performance parameters including egg production, egg mass, egg weight, percentage of soft shell eggs, feed conversion ratio, feed efficiency, final weight of hens and weight gain of hens were not affected by treatments. Hens in the control group had the lowest percentage of cracked eggs (P<0.05). Egg length, egg width, shell weight, egg index, haugh unit, wide end shell thickness, middle shell thickness and egg density were not differed between treatments at the beginning and end of the experiment. The highest thickness of the thin end shell, both at the end of the experiment, was related to hens receiving metformin drug at 100 mg/kg body weight (P<0.05). Albumin height, albumin weight, albumin pH, yolk height, yolk width, yolk weight, yolk pH, and yolk color were not affected by experimental treatments at the end of the experiment. In general, the use of metformin drug in this experiment, could not have a positive effect on the performance and quality characteristics of eggs.

کلیدواژه‌ها [English]

  • metformin
  • production performance
  • eggs quality traits
  • laying hens
Attia GR, Rainey WE and Carr BR, 2001. Metformin directly inhibits androgen production in human thecal cells. Fertility and sterility 76: 517-24.
Bailey CJ and Day C, 2004. Metformin: its botanical background. Practical diabetes international. 21:115-117.
Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M and Leverve XM, 2006. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. Journal of bioenergetics and biomembranes 38:33-42.
Beck, MM and KK Hansen, 2004. Role of Estrogen in Avian Osteoporosis. Poultry Science 83: 200-206.
Billa E, Kapolla N, Nicopoulou SC, Koukkou E, Venaki E, Milingos S, Antsaklis A and Adamopoulos DA, 2009. Metformin administration was associated with a modification of LH, prolactin and insulin secretion dynamics in women with polycystic ovarian syndrome. Gynecological Endocrinology 25:427-434.
Cai H, Han B, Hu Y, Zhao X, He Z, Chen X, Sun H, Yuan J, Li Y, Yang X and Kong W, 2020. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. International Journal of Molecular Medicine 45: 715-730.
Chen WL, Wei HW, Chiu WZ, Kang CH, Lin TH, Hung CC, Chen MC, Shieh MS, Lee CC and Lee HM, 2011. Metformin regulates hepatic lipid metabolism through activating AMP-activated protein kinase and inducing ATGL in laying hens. European journal of pharmacology 67: 107-112.
Curl JS, Thayer R, Wettemann RP and Morrison R, 1985 Preovulatory concentrations of progesterone and estradiol in plasma and their relationships with eggshell quality in the laying hen. Poultry Science 64: 2383-2387.
Dupont J, Fernandez AM, Glackin CA, Helman L and LeRoith D, 2001. Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. Journal of Biological Chemistry 276: 26699-26707.
Ebeid TA, Eid YZ, El-Abd EA and El-Habbak MM,2008. Effects of catecholamines on ovary morphology, blood concentrations of estradiol-17β, progesterone, zinc, triglycerides and rate of ovulation in domestic hens. Theriogenology, 69: 870-8766.
Franco-Jimenez DJ and Beck MM, 2005. Intestinal calcium uptake, shell quality and reproductive hormones levels of three laying hen varieties after prolonged egg production. International Journal of Poultry Science 4: 518-522.
 Gamba M and Pralong FP, 2006. Control of GnRH neuronal activity by metabolic factors: the role of leptin and insulin. Molecular and cellular endocrinology 254:133-139.
Genazzani AD, Battaglia C, Malavasi B, Strucchi C, Tortolani F and Gamba O, 2004. Metformin administration modulates and restores luteinizing hormone spontaneous episodic secretion and ovarian function in nonobese patients with polycystic ovary syndrome. Fertility and sterility 81:114-119.
Johnson AL,2015. Ovarian follicle selection and granulosa cell differentiation. Poultry science 94: 781-785.
Li J, Leghari IH, He B, Zeng W, Mi Y and Zhang C, 2014. Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-α. Theriogenology 82:517-524.
Lillpers K and Wilhelmson M 1993. Age-dependent changes in oviposition pattern and egg production traits in the domestic hen. Poultry Science 72: 2005-2011.
Liu HK and Bacon WL, 2005. Changes in egg production rate induced by progesterone injection in broiler breeder hens. Poultry science 84: 321-327.
Liu X, Lin X, Zhang S, Guo C, Li J, Mi Y and Zhang C, 2018. Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging (Albany NY10: 2016.
Lu M, Tang Q, Olefsky JM, Mellon PL and Webster NJ, 2008. Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LβT2 gonadotropes. Molecular Endocrinology 22:760-771.
Makino R, Uda M, Shuto S, Kita K, Tachibana T. 2021. Influence of dietary metformin on the growth performance and plasma concentrations of amino acids and advanced glycation end products in two types of chickens. The Journal of Poultry Science  58(2):  110-118.
Mansfield R, Galea R, Brincat M, Hole D and Mason H, 2003. Metformin has direct effects on human ovarian steroidogenesis. Fertility and sterility 2003.79: 956-962.
Molnár A, Maertens L, Ampe B, Buyse J, Kempen I, Zoons J, Delezie E, 2016. Changes in egg quality traits during the last phase of production: is there potential for an extended laying cycle?. British Poultry Science 57:842-847.
Pal L, Chu HP, Shu J, Topalli I, Santoro N and Karkanias G, 2007. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line. Fertility and sterility 88: 1143-1149.
Palomba S, Orio Jr F, Falbo A, Russo T, Tolino A and Zullo F, 2006. Effects of metformin and clomiphene citrate on ovarian vascularity in patients with polycystic ovary syndrome. Fertility and sterility 86:1694-1701.
Prasad SK, Qureshi TN, Saxena S, Qureshi S, Mehar M and Thakur SK, 2007. L-Dopa feeding induces body growth and reproductive conditions in Japanese quail, Coturnix coturnix Japonica. International Journal of Poultry Science 6:560-566.
Qin X, Du D, Chen Q, Wu M, Wu T, Wen J, Jin Y, Zhang J and Wang S, 2019. Metformin prevents murine ovarian aging. Aging (Albany NY) 11: 3785.
Tosca L, Froment P, Rame C, McNeilly JR, McNeilly AS, Maillard V and Dupont J, 2011. Metformin decreases GnRH-and activin-induced gonadotropin secretion in rat pituitary cells: potential involvement of adenosine 5′ monophosphate-activated protein kinase (PRKA). Biology of reproduction 84: 351-362.
Tosca L, Solnais P, Ferré P, Foufelle F and Dupont J, 2006. Metformin-induced stimulation of adenosine 5′ monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa cells. Biology of reproduction 75: 342-351.
Tosca L, Uzbekova S, Chabrolle C and Dupont J, 2007. Possible role of 5′ AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation. Biology of Reproduction 77: 452-465.
Vézina F, Salvante KG and Williams TD, 2003. The metabolic cost of avian egg formation: possible impact of yolk precursor production?. Journal of Experimental Biology 206:4443-4451.
Vrbikova J, Hill M, Starka L, Cibula D, Bendlova B, Vondra K, Sulcova J and Snajderova M, 2001. The effects of long-term metformin treatment on adrenal and ovarian steroidogenesis in women with polycystic ovary syndrome. European Journal of Endocrinology 144: 619–628.
Weaver EA, Ramachandran R. 2023. Metformin improves ovarian function and increases egg production in broiler breeder hens. Reproduction  165(3):  289-300.
Wistedt A, Ridderstråle Y, Wall H and Holm L, 2014. Exogenous estradiol improves shell strength in laying hens at the end of the laying period. Acta veterinaria scandinavica 56:1-11.
Yao J, Ma Y, Zhou S, Bao T, Mi Y, Zeng W, Li J, Zhang C. 2020. Metformin prevents follicular atresia in aging laying chickens through activation of PI3K/AKT and calcium signaling pathways. Oxidative Medicine and Cellular Longevity    2020:  3648040.
Yilmaz O, Prat F, Ibañez AJ, Amano H, Koksoy S and Sullivan CV, 2015. Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: Status and perspectives on multiplicity and functioning of vitellogenins. General and comparative endocrinology 221:16-22.