ارزیابی سطوح مختلف لیزین قابل هضم و نسبت آن به اسیدهای آمینه ضروری در جوجه های گوشتی سویه آرین در دوره آغازین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

2 دانشیار تغذیه طیور، عضو علمی گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

3 دانشیار گروه علوم دامی دانشگاه تبریز

4 دانشیار ، گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

چکیده

زمینه مطالعاتی: لیزین دومین اسیدآمینه محدود‌کننده برای جوجه‌‌های گوشتی محسوب می‌شود همچنین نیاز سایر اسیدهای آمینه نسبت به لیزین به عنوان اسیدآمینه مرجع بیان می‌شود. هدف: این آزمایش به منظور ارزیابی سطوح و نسبت‌های مطلوب اسیدهای آمینه ضروری به لیزین قابل هضم در جوجه‌های گوشتی سویه آرین دردوره آغازین انجام گرفت. روش کار: آزمایش در قالب طرح کاملاً تصادفی به روش فاکتوریل سه الگوی اسید آمینه(جدول آرین،آجینوماتو و برزیلی)× سه سطح لیزین قابل هضم(18/1، 25/1 و 32/1 %) با استفاده از540 قطعه جوجه گوشتی سویه آرین نر در قالب 9 تیمار و 5 تکرار 12 قطعه‌ای، اجراشد. نتایج: افزایش وزن روزانه تحت تاثیر اثرات متقابل سطح لیزین و الگوی اسیدهای‌آمینه قرار گرفت (05/0(p<. جیره‌های حاوی سطح لیزین 32/1 و الگوی آرین بالاترین افزایش وزن روزانه را داشتند. پرندگان دریافت کننده الگوی آرین و سطح لیزین 32/1 درصد بهترین افزایش وزن و پرندگان دریافت کننده الگوی آجینوماتو کمترین افزایش وزن را داشتند (05/0(p<. ضریب تبدیل تحت تاثیر اثرات متقابل سطح لیزین و الگوی اسیدهای‌آمینه قرارگرفت(05/0(p<. سطوح 25/1 و 32/1 لیزین پایین‌ترین ضریب تبدیل را داشتند (05/0.(p< پرندگان دریافت کننده الگوی آرین پایین ترین ضریب تبدیل را داشتند (05/0(p<. اثر الگوی اسیدهای آمینه و اثر متقابل آن بر بازده لاشه معنی دار بود پرندگان دریافت کننده آرین بازده لاشه بالاتری نسبت به الگوی برزیلی داشتند(05/0(p<. با افزایش سطح لیزین وزن و درصد سینه بطور معنی داری افزایش یافت (05/0(p<. با افزایش سطح لیزین در جیره، وزن و درصد اندام‌های لنفاوی افزایش یافت(05/0(p<. ایمنوگلوبین کل بر علیه گلبول قرمز گوسفندی و آنتی بادی بر علیه نیوکاسل تحت تاثیر سطح لیزین و الگوی اسیدهای آمینه قرار گرفتند و پرندگان دریافت کننده سطح 32/1 لیزین و الگوی آرین پاسخ بالاتری نشان دادند (05/0(p<. نتیجه‌گیری نهایی: تغذیه جوجه‌های آرین در دوره آغازین با 32/1درصد لیزین و الگوهای اسیدهای آمینه آرین می‌تواند به بهبود عملکرد رشد و ویژگی‌های لاشه و سیستم ایمنی آن‌ها کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of different levels of digestible lysine and its ratio to essential amino acids in Arian strain broilers in the starter period

نویسندگان [English]

  • Behnaz Rezaei 1
  • Ruhollah Kianfar 2
  • Hosein janmohammadi 3
  • Majid Olyaee 4
1 Doctoral student, Department of Animal Science, Faculty of Agriculture, University of Tabriz
2 Associate Professor in Poultry Nutrition, Scientific Member Staff of Animal Science Department Faculty of Agriculture University of Tabriz
3 Department of Animal Science. Faculty of Agriculture. University of Tabriz, Tabriz, Iran
4 Associate Professor , Department of Animal Science, Faculty of Agriculture, University of Tabriz
چکیده [English]

Introduction: Lysine is considered the second limiting amino acid for broiler chickens, and the requirement for other amino acids relative to lysine is expressed. This experiment aimed to evaluate the levels and desirable ratios of essential amino acids to digestible lysine in broiler chickens of the Arian strain during the starter period. This study investigates the effects of different levels of lysine and various patterns of amino acids on the growth performance, carcass characteristics, feed intake, and immune parameters in broiler chickens
Material and methods: In this experiment, 540-day-old male Arian broiler chicks were allocated to 9 treatments with 5 replicates of 12 birds each. The experiment followed a completely randomized design with a factorial arrangement of 3×3 (three amino acid patterns, Arian,) Ajinomoto and Brazilian table( × three levels of digestible lysine 1.18, 1.25 and 1.32%). Observations were conducted over three periods: 0-7 days, 7-14 days, and the overall 0-14 day period.
Results and discussion: Daily weight gain during all three periods (0-7 days, 7-14 days, and total 0-14 days) was significantly affected by the level of lysine, amino acid pattern, and their interaction (p<0.05). Diets containing 1.32% lysine exhibited the highest daily weight gain. Birds receiving the Arian pattern had the highest weight gain, while those receiving the Ajinomoto pattern had the lowest (p<0.05). Daily feed intake over the entire trial period was influenced by the level of lysine and amino acid pattern (p<0.05). Birds fed diets with 1.25% and 1.32% lysine had the highest feed intake. The feed conversion ratio (FCR) during the trial period was affected by lysine level, amino acid pattern, and their interaction. Birds receiving the Arian pattern had the lowest FCR. The effects of amino acid pattern and its interaction with lysine on carcass yield were significant (p<0.05). Birds receiving the Arian pattern had a higher carcass yield compared to the Brazilian pattern. An increase in lysine level significantly increased breast weight and percentage (p<0.05). Breast weight and percentage were also influenced by the amino acid pattern, with the Arian pattern being the best. The interaction effect of lysine and amino acid pattern on breast weight and thymus weight was significant (p<0.05). Increasing lysine level increased lymphoid organ weight and percentage significantly (p<0.05). Total immunoglobulins and antibody titers against sheep red blood cells and Newcastle disease were influenced by lysine level (p<0.05), with birds receiving 1.32% lysine showing the highest response. The effect of amino acid pattern was significant only on total immunoglobulin and Newcastle disease antibody titer (p<0.05), with the Arian pattern being better than the Brazilian pattern. Based on the comprehensive results, the study investigated the impact of various experimental treatments on performance indicators in broiler chickens. Results indicated significant effects of lysine levels and amino acid patterns on live weight, feed intake, and carcass characteristics. Birds receiving diets with higher lysine content, particularly 1.49% lysine, exhibited significantly greater live weights compared to those fed with 1.18% lysine. Additionally, live weight was influenced by amino acid patterns, with birds receiving the Ariane pattern showing the highest weight gain. The interaction effects between lysine levels and amino acid patterns on live weight were also significant, emphasizing the importance of balanced amino acid profiles in diets. Daily weight gain and feed intake were significantly affected by lysine levels and amino acid patterns, with higher lysine diets and the Ariane pattern resulting in superior performance. Moreover, carcass weight and quality parameters such as breast percentage and thigh weight were influenced by lysine levels and amino acid patterns, indicating the importance of optimizing these factors for improved carcass traits. Overall, the findings underscore the significance of dietary lysine levels and amino acid patterns in optimizing broiler performance and carcass characteristics. Based on the previous sections' results, I conducted a comparative analysis. With the gradual increase in lysine levels, the rate of weight gain remained constant, while feed consumption decreased. This phenomenon suggests that the feed conversion ratio responds to higher lysine levels (Baker et al., 2002). Rostagno et al., (2007) reported the need for lysine levels above 0.95% to enhance growth rate and improve feed conversion efficiency. Abdullah et al., (2010) observed a significant improvement in feed conversion ratio with an increase in lysine levels from 0.85% to 0.90% at 25-38 days of age. Yamamoto et al. (2000) suggested that chicks prefer diets with a balanced amino acid profile, indicating that the ideal digestible lysine level in practical diets for broilers can greatly reduce the feed conversion ratio. Feed intake in poultry is influenced by factors such as energy, amino acid balance in the diet, age, environmental temperature, lighting program, physical activities, appearance and taste of feed, and water consumption. Davoodpour et al., (2012) reported that feed intake can be influenced by protein and amino acid content in the diet. Nitrogen deficiency for non-essential amino acid synthesis, unbalanced ratio of essential to non-essential amino acids, deficiency of certain essential amino acids, and differences in the utilization efficiency of synthetic amino acids compared to those present in feed for protein synthesis can affect poultry performance (Panda et al., 2011). The absorption of nutrients is influenced by the biological activity of amino acids as metabolic fuels in the body, which can affect hunger and satiety centers in the hypothalamus and feed intake (Wang et al., 2012). Abdullah et al., (2010) reported that increasing lysine levels in the diet from 1.1% to 2.1% during days 0-14 significantly improved feed intake and weight gain in Ross 308 and Hubbard broilers. Sakomura et al. (2010) reported that increasing lysine levels in broilers are beneficial as they lead to increased growth rate and reduce the days required to reach market weight. Feed intake has a direct relationship with increasing lysine levels (Norouzi et al., 2004). Imbalance in dietary amino acids can reduce feed intake (Bourre et al., 2006). Gradual increase in dietary lysine negatively affects feed intake (Nemati et al., 2008). Using birds of the same age and from multiple strains, Valerio et al., (2003) did not report any effect of lysine levels on feed consumption. Conclusion: These findings indicate that feeding Arian broiler chickens during the starter period with 1.32% digestible lysine and patterns of amino acids cataloged in the Arian strain can improve their growth performance and carcass characteristics.

کلیدواژه‌ها [English]

  • Arian
  • immune system
  • growth performance
  • digestible lysine
  • amino acid ratio
اﻧﺠﻤﻦﺻﻨﻔﯽﺗﻮﻟﯿﺪﮐﻨﻨﺪﮔﺎنﺟﻮﺟﻪﯾﮑﺮوزه(1394). ﺻﻨﻌﺖ ﻃﯿﻮر در ﺳﺎل 1393 .ﭼﺎپ اول. اﻧﺘﺸﺎرات اﻧﺠﻤﻦﺻﻨﻔﯽﺗﻮﻟﯿﺪﮐﻨﻨﺪﮔﺎنﺟﻮﺟﻪ یکروز.ص.16، 18و45.
زمانی م، رضایی  م ، تیموری یانسری الف، سیاح زاده ه، و نیک نفس  ف. (1392). تاثیر سطوح مختلف انرژی و پروتئین جیره پایانی بر عملکرد، خصوصیات لاشه و غلظت لیپید‌‌های سرم خون جوجه‌‌های گوشتی.‎ نشریه پژوهش های علو دامی، جلد 32، شماره 2.
تقی زاده و، نصیری م، طهمورث پور م، بختیاری زاده، مر، و جوادمنش ع . (1397). مطالعه شبکه ژنی آنژیوژنز در جوجه های مرغ آرین حساس به آسیت با استفاده از داده های RNA-Seq. پژوهش های علوم دامی ایران، 10(2 )، 249-262.
Abdollah A, Ebdel-Khalik MA, Radwan N. (2010). Optimal ratio between digestible lysine and metabolizable energy in broiler diets formulated based on ideal amino acid profile. Proceeding XIIIth European Poultry Conference, August 23-27, Tours, France. Poster Session I, pp. 444.
Ayari R, Olyayee M, Jonmohammadi H, Kianfar R. (2022). Effect of Dietary Supplementation of Liquid Prebiotic and Antibiotic on Egg Production, Egg Quality, Blood Parameters, Immune System Response of Layer Hens at Post Molt Period. rap. 13(37), 40-51. doi:10.52547/rap.13.37.40
Baker DH, Batal AB, Parr TM, Augspurger NR, Parsons CM. (2002). Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine, and valine for chicks during the second and third weeks posthatch. Poultry Science. 81(4), 485-494.
Bureau DP, Encarnação PM. (2006). Adequately defining the amino acid requirements of fish: the case example of lysine. Avances en Nutrición Acuicola.
Cengiz O, Onol AG, Sevim O, Ozturk M, Sari M, Daskiran M. (2008). Influence of excessive lysine and/or methionine supplementation on growth performance and carcass traits in broiler chicks. Revue de Médecine Vétérinaire. 159(4), 230-236.
Chen C, Sander JE, Dale NM. (2003). The effect of dietary lysine deficiency on the immune response to Newcastle disease vaccination in chickens. Avian Diseases. 47(4), 1346-1351.
Dozier WA III, Payne RL. (2012). Digestible lysine requirements of female broilers from 1 to 15 days of age. Journal of Applied Poultry Research. 21(2), 348-357.
Garsia AR, Batal AB, Baker DH. (2006). Variations in the digestible lysine requirement of broiler chickens due to sex, performance parameters, rearing. Poultry Science. 85, 498-504.
Hesabi A, Nasiri H, Birjandi M. (2006). Effect of supplemental methionine and lysine on performance and carcass yield characteristics in broiler chicks. World Poultry Science Association. 16, 112-117.
Humphrey BD, Stephensen CB, Calvert CC, Klasing KC. (2006). Lysine deficiency and feed restriction independently alter cationic amino acid transporter expression in chicken comparative biochemistry and physiology part A. 143, 218-227.
Kidd MT, Fancher BI. (2001). Lysine needs of starting chicks and subsequent effects during the growing period. Journal of Applied Poultry Research. 10(4), 385-393.
Kitai K, Arakava A. (1979). Effect of antibiotics and caprylohydroxamic acid on ammonia gas from chicken excreta. British Poultry Science. 20, 55-62.
Klasing KC. (2007). Nutrition and immune system. Gordon memorial lecture. British Poultry Science. 48, 525-537.
Labadan MC Jr, Hsu KN, Austic RE. (2001). Lysine and arginine requirements of broiler chickens at two-to-three-week intervals to eight weeks of age. Poultry Science. 80(5), 599-606.
Lemme A, Elwart C, Casanovas P. (2009). Optimal dietary amino acid supply in Cobb 500 broilers under European feeding conditions. Evonik Degussa (Amino news). Vol. 13, No. 01.
Murwani R. (2008). Effect of corn or sorghum in combination with soybean meal or mungbean as feed ingredients on the serum antibody titres to NDV vaccine in broiler chickens. International Journal of Poultry Science. 7, 497-501.
McAllister EJ, Apgar JR, Leung CR, Rickert RC, Jellusova J. (2017). New Methods to Analyze B cell Immune Responses to Thymus-Dependent Antigen Sheep Red Blood Cells. Journal of Immunology (Baltimore, Md.: 1950). 199(8), 2998-3003. doi:10.4049/jimmunol.1700454
Namazu LB, Kobashigawa E, Albuquerque R, Schammass EA, Takeara P, Trindade Neto MAD. (2008). Lisina digestível e zinco quelado para frangos de corte machos: desempenho e retenção de nitrogênio na fase pré-inicial. Revista Brasileira de Zootecnia. 37, 1634-1640.
Nassiri Moghaddam H, Hesabi Namegi A, Madeni MM. (2007). Effect of supplemental lysine and methionine on performance and carcass yield characteristics in broiler chicks. Iranian Food Science and Technology Research Journal. 20(5), 283-293. (In Persian).
Nasr J, Kheiri F. (2011). Effect of different lysine levels on Arian broiler performances. Italian Journal of Animal Science. 10(3), e32.
Olyayee M, Javanmard A, Janmohammadi H, Kianfar R, Alijani S, Mir Ghelenj SA. (2023). Supplementation of broiler chicken diets with bovine lactoferrin improves growth performance, histological parameters of jejunum and immune-related gene expression. Journal of Animal Physiology and Animal Nutrition. 107(1), 200-213.
Oliveira HG, Carrijo AS, Kiefer C, Garcia ERM, Oliveira JA, Silva JB, Horing SF. (2013). Lisina digestível em dietas de baixa proteína para frangos de corte tipo caipira de um aos 28 dias. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 65, 497-504.
Rostagno HS, Albino LFT, Donzele JL, Gomes PC, Oliveira RD, Lopes DC, Euclides RF. (2011). Tabelas brasileiras para aves e suínos. Composição de alimentos e exigências nutricionais. 2, 186.
Sakomura N, Siqueira J, Gous R, Malheiros E, Fernandes J, Bonato M. (2010). Comparison of feed formulation techniques to estimate lysine requirements of broilers. Proceeding XIIIth European Poultry Conference, August 23-27, Tours, France. Poster Session I, pp. 473.
Sterling KG, Redenov DV, Pesti GN, Bakalli RI. (2005). Economically optimal dietary crude protein and lysine levels for starting broiler chickens. Poultry Science. 84, 29-36.
Takihashi K, Kanashi S, Akiba Y, Horiguchi M. (1994). Effect of dietary Threonine level on antibody production in growing broilers. Animal Feed Science and Technology. 65, 956-960.
Trindade Neto MAD, Toledo ALD, Takeara P, Kobashigawa E, Donato DCZ, Albuquerque RD. (2011). Dietary levels of lysine for male broilers from 23 to 36 days of age: performance and body composition. Revista Brasileira de Zootecnia. 40, 609-615.
Valério SR, Oliveira RFM, Donzele JL, Gomes PC, Apolônio LR, Resende WDO. (2003). Níveis de lisina digestível em rações, em que se manteve ou não a relação aminoacídica, para frangos de corte de 22 a 42 dias de idade, mantidos em estresse por calor. Revista Brasileira de Zootecnia. 32, 372-382.