تأثیر تغذیه ثابت و متناوب پروتئین خام جیره بر فراسنجه‌های شکمبه‌ای و سنتز پروتئین میکروبی در گوسفند

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی مغان، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

چکیده
زمینه مطالعاتی: پروتئین خام یک عنصر کلیدی در تنظیم جیره غذایی نشخوارکنندگان بوده و یکی از گرانترین مواد مغذی مورد نیاز دام محسوب می‌شود. یکی از راهکارهای استفاده بهینه از پروتئین خام تغذیه متناوب آن و ایجاد نوسان در سطح پروتئین خام جیره در فواصل زمانی یک تا سه روز است. هدف: این پژوهش به منظور بررسی تأثیر تغذیه ثابت و متناوب پروتئین خام جیره بر فراسنجه‌های شکمبه‌ای و سنتز پروتئین میکروبی در گوسفند انجام شد. روش کار: سه جیره غذایی با پروتئین خام 12، 14 و 16 درصد اما با انرژی یکسان تنظیم شدند. از 8 رأس گوسفند نر در قفس‌های متابولیک به صورت طرح مربع لاتین 4×4 (چهار تیمار با 2 مربع و در مجموع 8 تکرار) استفاده شد. تیمار اول جیره‌ای با سطح پروتئین خام 14 درصد را به صورت ثابت دریافت می‌کرد. تیمار دوم دو جیره با پروتئین خام 12 و 16 درصد را با فاصله زمانی 24 ساعت به طور متناوب دریافت می‌کرد. تیمارهای سوم و چهارم نیز جیره‌های با پروتئین خام 12 و 16 درصد را به ترتیب در فواصل زمانی 48 و 72 ساعت به طور متناوب دریافت می‌کردند. تعادل و ابقای نیتروژن، فراسنجه‌های شکمبه‌ای و خونی و سنتز پروتئین میکروبی اندازه گیری شد. نتایج: کمترین نیتروژن دفع شده کل (از طریق ادرار و مدفوع) در تیمار با تناوب مصرف پروتئین خام 48 ساعته مشاهده شد (031/0=P). نیتروژن ابقاء شده نیز در این تیمار در مقایسه با تیمار تغذیه ثابت پروتئین خام افزایش معنی‌داری را نشان داد (045/0=P). بیشترین نیتروژن آمونیاکی مایع شکمبه در تیمار با تناوب مصرف پروتئین خام 48 ساعته مشاهده شد اما pH و غلظت اسیدهای چرب فرار تفاوت معنی‌داری را در بین تیمارهای آزمایشی نشان ندادند. تفاوت معنی‌داری بین تیمارهای آزمایشی از نظر آلانتوئین، کل بازهای پورینی دفع شده و همچنین تولید نیتروژن و سنتز پروتئین میکروبی مشاهده شد که تیمار با تناوب مصرف پروتئین خام در فاصله زمانی 48 ساعته دارای بیشترین مقدار بود. آلبومین و پروتئین کل خون اندازه‌گیری شده در بین تیمارهای آزمایشی تفاوت معنی‌داری را نشان نداد اما نیتروژن اوره‌ای خون در تیمار با تناوب مصرف پروتئین خام 48 ساعته، بیشترین مقدار بود (005/0 =P). نتیجه‌گیری نهایی: نتایج نشان داد که استفاده از راهبرد تغدیه پروتئین خام به صورت متناوب در جیره گوسفند سبب بهبود ابقای نیتروژن، فعالیت‌های تخمیری شکمبه و سنتز پروتئین میکروبی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of constant and oscillating dietary crude protein concentration on ruminal parameters and microbial protein synthesis in sheep

نویسنده [English]

  • Taher Yalchi
Department of Animal Science, Moghan Faculty of Agriculture and natural resources, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Introduction: Crude protein is a key element in regulating the diet of ruminants and is considered one of the most expensive nutrients needed by livestock. Feeding management plays an important role in the elimination of nitrogen in the production environment and the emission of greenhouse gases in animal husbandry systems (Avathar et al 2021). When there is excessive discharge of nitrogen in the environment, it causes the ecological balance in surface waters to be disrupted and the groundwater to be polluted (Dijkstra et al 2011). Excretion of these compounds in the environment will increase with fermentation, digestion and inefficient metabolism, and the increase in inefficiency in the rumen is caused by the complex and competitive metabolic pathways in the rumen microbial population. Therefore, increasing efficiency in the use of nutrients, especially nitrogen, to minimize their excretion from the animal's body should be considered. Various methods can be implemented in an animal husbandry unit to improve the use of nitrogen in ruminants. One of these solutions is to reduce the crude protein in the diet, but it has been reported that this method can have a negative effect on animal production (Chibisa and Motswangwa 2013). Another solution is nutrient synchronization or synchronizing the fermentation rate of dietary protein and energy sources, which has led to limited success (Yelchi et al 2020). Another solution is to create oscillating in the concentration of crude protein in the diet and feed it intermittently at intervals of one to three days, and previous reports show that this method has improved nitrogen retention and its utilization in the body compared to eating constant amounts of crude protein daily in sheep and cattle (Rach et al., 2021). This study was conducted in order to investigate the effect of constant and intermittent feeding of dietary crude protein on ruminal parameters and microbial protein synthesis in sheep.
Material and Methods: Three diets were adjusted with 12, 14 and 16% crude protein but with the same metabolizable energy and protein. 8 male sheep were used in metabolic cages in a 4x4 Latin square design (four treatments with 2 squares and 8 replications). The first treatment received a diet with a crude protein level of 14% constantly. The second, third and fourth treatments received diets with 12 and 16% crude protein at intervals of 24, 48 and 72 hours, respectively. Nitrogen balance and retention, rumen and blood parameters, volatile fatty acids and microbial protein synthesis were measured.
Results and Discussion: The lowest total excreted nitrogen (via urine and feces) was observed in the treatment with 48-hour raw protein consumption interval (P=0.031). The retained nitrogen showed a significant increase in this treatment as compared to the constant crude protein feeding treatment (P=0.045). It has been reported that the increase in nitrogen retention in ruminants that received diets with oscillating crude protein levels is due to increased urea recycling in the rumen (Cole, 1999). It seems that the transfer of urea from the blood to the rumen during the consumption of diets with low crude protein level (times 24, 48 and 72 hours) in oscillating diets increased and it compensates for the shortage of nitrogen in the rumen. In this condition, nitrogen excretion through urine also decreases and the efficiency of nitrogen use increases. The highest rumen liquid ammonia nitrogen was observed in the treatment with 48-hour crude protein consumption interval, but the pH and concentration of volatile fatty acids did not show any significant difference among the experimental treatments. Comparing the treatment of constant crude protein feeding (14%) with the treatments with intermittent consumption of crude protein (12 and 16%) in terms of the concentration of volatile fatty acids in the rumen fluid of the experimental sheep, including acetate, propionate and butyrate, as well as total volatile fatty acids, there is not a significant difference. The same ratio of concentrate to fodder and the similarity of the feed ingredients in the diets can be a reason for the lack of significance between the experimental treatments, which is in line with the results of previous researches (Khattab and Abdulwahid, 2018). A significant difference was observed between the experimental treatments in terms of allantoin, total purine bases excreted, as well as nitrogen and microbial protein production, and the treatment with oscillating consumption of raw protein at a time interval of 48 hours had the highest amount. Albumin and total blood protein measured between the experimental treatments showed no significant difference, but blood urea nitrogen was the highest in the treatment with 48-hour crude protein consumption interval (P = 0.005). Microbial protein synthesis in the rumen is affected by many animal and dietary factors, including nitrogen amounts, nitrogen sources, carbohydrate and nitrogen degradation rates, type and amount of carbohydrates in the diet, dry matter consumption, stability of fermentation in the rumen, and synchronization between nitrogen and energy (Hall 2013). It seems that in diets that cause fluctuation in the entry of protein sources into the rumen, the recycling of nitrogen to the rumen is done more effectively through the blood vessels and the liver, which in addition to reducing the excretion of nitrogen from the body also increases the production of microbial protein, in other words, the efficiency of using feed nitrogen increases, which is evident in the results of this research.
Conclusion: The results showed that using the strategy of oscillating dietary crude protein concentration in sheep's diet improves nitrogen retention, rumen fermentation activities and microbial protein synthesis.

کلیدواژه‌ها [English]

  • Environmental pollution
  • Male lamb
  • Nitrogen balance
  • Nitrogen retention
  • Ruminal fermentation
AOAC International, 2012. Official Methods of Analysis. 19th ed. AOAC International, Gaithersburg, MD.
Belanche A, De la Fuente G, Moorby JM and Newbold CJ, 2012. Bacterial protein degradation by different rumen protozoal groups. Journal of Animal Science 90(12): 4495-4504.
Burgos SA, Embertson NM, Zhao Y, Mitloehner FM, DePeters EJ and Fadel JG, 2010. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: Relation of milk urea nitrogen to ammonia emissions. Journal of Dairy Science 93(6): 2377-2386.
Chen XB and Gomes MJ, 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - An overview of the technical details. Rowett Research Institue, University of Aberdeen (UK). 21p.
Chibisa GE and Mutsvangwa T, 2013. Effects of feeding wheat or corn-wheat dried distillers grains with solubles in low-or high-crude protein diets on ruminal function, omasal nutrient flows, urea-N recycling, and performance in cows. Journal of Dairy Science 96(10): 6550-6563.
Chumpawadee S, Sommart K, Vongpralub T, Pattarajinda V, 2006. Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian- Australasian Journal of Animal Science 19(2): 181-188.
Cole NA, 1999. Nitrogen retention by lambs fed oscillating dietary protein concentrations. Journal of Animal Science 77(1): 215-222.
Cole NA, Greene LW, McCollum FT, Montgomery T, McBride K, 2003. Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers. Journal of Animal Science 81(11): 2660-2668.
Collins RM, Pritchard RH, 1992. Alternate day supplementation of corn stalk diets with soybean meal or corn gluten meal fed to ruminants. Journal of Animal Science 70(12): 3899-3908.
Cue RI, 2006. Statistical methods AEMA-610. Department of Animal Science. McGill University. 281p.
Dijkstra J, Oenema O, Bannink A, 2011. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Current Opinion in Environmental Sustainability 3(5): 414-22.
Erickson GE, Klopfenstein TJ, 2001. Nutritional methods to decrease N losses from open-dirt feedlots in Nebraska. The Scientific World Journal 1: 836-843.
Hall MB, 2013. Dietary starch source and protein degradability in diets containing sucrose: Effects on ruminal measures and proposed mechanism for degradable protein effects. Journal of Dairy Science 96: 7093-7109.
Kargar S, Ghorbani GR, Alikhani M, Khorvash M, Rashidi L, and Schingoethe DJ, 2012. Lactational performance and milk fatty acid profile of Holstein cows in response to dietary fat supplements and forage: concentrate ratio. Livestock Science, 150: 274–283.
Karsli MA and Russell JR, 2002. Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turkish Journal of Veterinary Science 26: 201-207.
Khattab IM and Abdel-Wahed AM, 2018. Effect of oscillating crude protein content on nitrogen utilization, milk production and performance of sheep. Egyptian Journal of Nutrition and Feeds 21(2): 373-380.
Khezri A, Rezayazdi K, Danesh Mesgaran M and Moradi-Sharbabak M, 2009. Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and actation performance of Holstein dairy cows. Asian-Australian Journal of Animal Sciences 22: 651-658.
Kiran D and Mutsvangwa T, 2009. Nitrogen utilization in growing lambs fed oscillating dietary protein concentrations. Animal Feed Science and Technology 152(1-2): 33-41.
Lapierre H and Lobley GE, 2001. Nitrogen recycling in the ruminant: A review. Journal of Dairy Science 84: E223-E236.
Ludden PA, Wechter TL, Hess BW, 2002. Effects of oscillating dietary protein on nutrient digestibility, nitrogen metabolism, and gastrointestinal organ mass in sheep. Journal of Animal Science 80(11): 3021-3026.
Ludden PA, Wechter TL, Scholljegerdes EJ, Hess BW, 2003. Effects of oscillating dietary protein on growth, efficiency, and serum metabolites in growing beef steers. The Professional Animal Scientist 19(1): 30-34.
Narimani Garajeh S, Seifdavati J, Abdi Benemar H, Salem AZM and Seyed Sharifi R, 2022. In-vitro bioconversion of potato byproduct by rumen microorganisms. Journal of Animal Science Research (Agricultural Science) 32(1): 45-56. (In persian)
NRC, 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington DC.
Ouatahar L, Bannink A, Lanigan G, Amon B, 2021. Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Science of the Total Environment 776: 145932.
Pfeffer, E and Hristov AN, 2005. Nitrogen and phosphorous nutrition of cattle. First edition. CABI Publishing. USA. 304p.
Rauch R, Martín-Tereso J, Daniel JB and Dijkstr, J, 2021. Dietary protein oscillation: Effects on feed intake, lactation performance, and milk nitrogen efficiency in lactating dairy cows. Journal of Dairy Science 104(10): 10714-10726.
Reynolds CK and Kristensen NB, 2008. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. Journal of Animal Science 86(suppl_14): E293-E305.
Richardson JM, Wilkinson RG and Sinclair LA, 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. Journal of Animal Science 81: 1332-1347.
Russell JB, O'connor JD, Fox DG, Van Soest PJ and Sniffen CJ, 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70(11): 3551-3561.
SAS Institute, 2004. SAS 9.1 for Windows. SAS Institute, Cary, NC.
Shabkhan S, Bashtani M and Farhangfar SH, 2020. Effect of different levels of sesame meal on performance, some blood factors and antioxidant parameters in fattening lambs. Journal of Animal Science Research (Agricultural Science) 30(3): 1-12. (In persian)
Souza NKP, Detmann E, Valadares Filho SC, Costa VAC, Pina DS, Gomes DI, Queiroz AC and Mantovani HC, 2013. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 65: 1752-1758.
Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C, 2006. Food and Agriculture Organization of the United Nations; Rome. Livestock's long shadow: environmental issues and options.
Van Soest PJ, Robertson JB and Lewis BA, 1991. Methods for dietary neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.
VandeHaar MJ and St-Pierre N, 2006. Major advances in nutrition: Relevance to the sustainability of the dairy industry. Journal of Dairy Science 89(4): 1280-1291.
Vergé XPC, Dyer JA, Desjardins RL and Worth D, 2008. Greenhouse gas emissions from the Canadian beef industry. Agricultural Systems 98(2): 126-134.
Yalchi T, Seif Davati J and Seyyed Sharifi R, 2020. Effect of Nutrient Synchrony on Ruminal Fermentation, Microbial Protein Synthesis and Nitrogen Balance in Sheep. Iranian Journal of Animal Science Research 12(1): 19-33. (In persian)
Yalchi T, Teimouri Yanesari A, Rezaee M and Chashnidel Y, 2016. Effect of Synchronizing Rate of Ruminal Fermentation on Nitrogen Balance, Microbial Protein Synthesis and Growth Performance in Feedlot Male Lori Lambs. Journal of Ruminant Research 4(4):67-90. (In Persian