تأثیر جایگزینی کنجاله سویا با دانه سویای خام، اکسترود شده و برشته‌شده‎ ‎‏ بر ‏فراسنجه‌های خونی، خصوصیات لاشه و الگوی اسیدهای چرب لاشه بره‌های نر افشاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه زنجان

2 گروه علوم دامی دانشگاه تبریز

3 گروه علوم دامی دانشگاه زنجان

چکیده

چکیده
زمینه مطالعاتی: دانه کامل سویا به منظور تامین انرژی و پروتئین در تغذیه نشخوارکنندگان استفاده می‌شود. ‏
هدف: هدف از اجرای پژوهش حاضر بررسی تأثیر جایگزینی کنجاله سویا با دانه سویای خام، اکسترود شده و ‏برشته‌شده بر فراسنجه‌های خونی، خصوصیات لاشه و الگوی اسیدهای چرب لاشه در بره‌های نر افشاری بود.‏
روش‌کار: پژوهش در قالب طرح کاملاً تصادفی با 7 تیمار و هر تیمار با 6 تکرار، به مدت 74 روز شامل 14 روز ‏دوره عادت دهی و 60 روز دوره نمونه‌گیری انجام شد. ‏
نتایج: بر اساس نتایج پژوهش غلظت کلسترول و نیتروژن اوره‌ای خون تحت تأثیر جیره‌های آزمایشی قرار ‏گرفت(01/0‏P<‎‏). در جیره حاوی کنجاله سویا، غلظت اسید پالمیتیک بیشتر از جیره‌های حاوی 15 درصد ‏سویای اکسترود شده و برشته‌شده بود‎ ‎‏(1/0‏P<‎‏). جیره حاوی 15 درصد سویای خام باعث افزایش اسید استئاریک ‏عضله راسته نسبت به کنجاله سویا گردید(05/0‏P<‎‏). در جیره حاوی 15 درصد سویای برشته‌شده غلظت اسید ‏واکسینیک بیشتر از کنجاله سویا بود (1/0‏P<‎‏). ‌اسیدلینولئیک کنژوکه در جیره‌های حاوی سویای اکسترود شده و ‏برشته‌شده بیشتر ازجیره‌های حاوی سویای خام و کنجاله سویا بود‎ ‎و این اختلاف تمایل به معنی‌داربودن داشت ‏‏(1/0‏P<‎‏). استفاده از 15 درصد سویای اکسترود شده موجب افزایش اسید لینولئیک لاشه نسبت به کنجاله سویا ‏گردید(05/0‏P<‎‏).‏‎ ‎مجموع اسیدهای چرب اشباع در جیره حاوی کنجاله سویا بیشتر از جیره حاوی 15 درصد سویای ‏برشته شده بود(05/0‏P<‎‏). اسیدهای چرب با چند باند دوگانه در جیره‌های حاوی سویای اکسترود شده و ‏برشته‌شده بیشتر از سویای خام و کنجاله سویا بود(05/0‏P<‎‏).‏
نتیجه‌گیری نهایی: بر اساس نتایج پژوهش حاضر جایگزینی کامل کنجاله سویا با سویای اکسترود شده و ‏برشته‌شده ( 15 درصد ماده خشک جیره) بدون تاثیر منفی بر خصوصیات لاشه، با بهبود فراسنجه‌های خونی، ‏افزایش اسید لینولئیک کنژوگه و اسیدهای چرب با چند باند دوگانه موجب افزایش اسیدهای چرب مفید در گوشت ‏بره‌ها گردید.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of replacement Soybean meal with crud, extruded and roasted full-‎fat soybean on blood metabolites, carcass characteristic, pattern of carcass ‎fatty acids of Afshari male lambs ‎

نویسندگان [English]

  • akbar taghizade 2
  • HAMID AMANLOU 3
  • ALI HOSSEINKHANI 2
  • hamid mohamadzade 2
1 کارشناس ارشد واحدهای دامپروری
2 Professor&rlm; &rlm;&lrm;., Dept. of Animal Science, Faculty of Agriculture, Tabriz University &lrm;of, Iran &lrm;
3 Faculty of Agriculture, Zanjan University of, Iran ‎
چکیده [English]

Abstract ‎
Introduction: Full fat soybean is commonly used in the diet of ruminant‏ ‏nutrition to meet energy ‎and protein requirements. To eliminate the anti-nutritional substances and increasing bypass ‎protein, soybean seeds are processed, and heat is the most common way used to processing ‎soybeans. Due to the heating of soybeans, unsaturated fatty acids produced by high oxidation, ‎which ultimately bind to amine groups of amino acids, are affected by their release in the rumen. ‎As a result, in addition to not having a negative effect on rumen fermentation, the entry of ‎unsaturated fatty acids into the small intestine can save it in the tissues, thus increasing the ‎amount of fatty acids that are useful for human nutrition. The main objectives of this research ‎were the estimate the effect of dietary replacement of crud, extruded and rousted full-fat ‎soybean with soybean meal on Blood metabolites, Carcass characteristic and Pattern of Carcass ‎fatty acids in Afshari male lambs. ‎
Material and methods: Diets were randomly‎‏ ‏assigned to 7 groups of 6 lambs each in a ‎completely‏ ‏randomized design. Animals received the diets,‎‏ ‏as a total mixed ration, twice daily (at ‎‎08:00 and 16:00‎‏ ‏h) to ensure 10% orts and had free access to fresh water. Fifty-two male Afshari ‎lambs with average BW of 30 ± 2 kg and 3-4 Mo of age were used for this study. Animals were ‎housed in individual pens (1.8 by 1 m) and allowed an adaptation period of 14 d and a data ‎collection period of 60 d. Experimental diets with equal ME and CP concentrations and a forage ‎to-concentrate ratio of 30 to 70 were formulated: Treatment 1: contains 15 percent of soybean ‎meal, treatment 2: Replace of 7.5 percent soybean meal with crud full fat soybean, Treatment 3: ‎Replace of 15 percent soybean meal with crud full fat soybean, treatment 4: Replace of 7.5 ‎percent of soybean meal with extruded full fat soybean, Treatment 5: Replace of 15 percent ‎soybean meal with extruded full fat soybean, Treatment 6: Replace of 7.5 percent soybean meal ‎with roasted full fat soybean, Treatment 7: Replace of 15 percent soybean meal with roasted full ‎fat soybean. Blood samples were collected from all animals on d 20, 40 and 60 of the data ‎collection period. Approximately 10 mL of blood was collected by evacuated heparinized tubes ‎and centrifuged (3000 rpm for 15 min), and plasma was stored at –20°C until analysis. The ‎concentrations of glucose, triglycerides, cholesterol, urea N, total protein, albumin, AST, ALT ‎and CK were measured by a spectrophotometer. Muscle thickness, loin muscle area and back fat ‎thickness, between 12th and 13th ribs were measured on d 20, 40 and 60 by ultrasound. At the ‎end of the experiment, three animals per treatment were slaughtered according to Halal method. ‎Hot-carcass weight and non-carcass components were weighed at slaughter day. After 24 h of ‎cooling at 4◦C, cold carcass weight was determined and carcass components were weighed. ‎About 50 g of the LD muscle between 12th to 13th ribs were taken for determination of fatty ‎acid profiles. ‎
‎ Results: The dietary substitution of soybean Meal with crud, extruded and roasted full-fat ‎soybean had no effects on glucose, triglyceride, protein, albumin and globulin concentration but ‎cholesterol and blood urea nitrogen concentrations were effected by experimental diets (P ‎‎<0.01). Feeding lambs on diets containing crud, extruded and roasted full-fat soybean instead of ‎soybean Meal had no effects on Ultrasound measurements of back fat thickness, muscle ‎thickness and loin muscle area. Carcass and non-carcass components were not affected by the ‎dietary treatment. Dietary treatments were not effected on short chain and long chain fatty acids. ‎The use of soybean meal significantly increased palmitic acid in comparison with the15% ‎extruded and rousted full fat soybean (P<0.05). Stearic acid concentration was higher for lambs ‎fed the 15% crude full fat soybean compared to the soybean meal‏ ‏‎(P<0.05). Replacing extruded ‎and roasted full-fat soybean increased poly on saturated fatty acids (p<0.01) and conjugated ‎linoleic acid‏ ‏‎(p<0.1). ‎
Conclusions: It is concluded that extruded and roasted full-fat soybean can‏ ‏be fed to fattening ‎Afshari lambs as a total replacement‏ ‏‎(15 percent of diet DM) for soybean meal without negative‏ ‏effects on carcass components, improved blood parameters, reduced saturated fatty acids and ‎increased conjugated linoleic acid, poly unsaturated fatty acids and useful fatty acids of meat in ‎Afshari lambs. ‎

کلیدواژه‌ها [English]

  • Soybean meal
  • full-fat soybean
  • Carcass fatty acids
  • Afshari Lambs
AbuGhazaleh  A and  Jenkins T, 2004. Short Communication: Docosahexaenoic acid promotes vaccenic    acid accumulation in mixed ruminal cultures when incubated with linoleic acid. Journal of Dairy Science 87: 1047-1050.
Aliyari D and Mirisakhani L, 1394. Relationship between body condition score (BCS) at lambing on ultrasounography, biometry measurement and productive traits of Afshari sheep. Journal of Animal Science Researches 25(3): 107-117.
Aminot-Gilchrist  DV and Anderson HDI, 2004. Insulin resistance-associated cardiovascular disease: Potential benefits of conjugated linoleic acid. Journal of  clinical nutrition 79:1159-1163.
Anderson J, Johnstone WBM  and Cook-Newwel ME, 1995. Meta-analysis of the effects of soy protein intake on serum lipids. The New England Journal of Medicine 333: 276-282. 
Asadollahi S, Sari M, Erafanimajd N, Kiani A, Ponnampalam EN, 2017. Supplementation of sugar beet pulp and roasted canola seed in a concentrate diet altered carcass traits, muscle (longissimus dorsi) composition and meat sensory properties of Arabian fattening lambs. Small Ruminant Research 153: 95-102.
Bailoni L, Bortolozzo A, Mantovani R, Simonetto A, Schiavon S and Bittante G, 2004. Feeding dairy cows with full fat extruded or toasted soybean seeds as replacement of soybean meal and effects on milk yield, fatty acid profile and CLA content. Italian Journal of Animal Science 3: 243-258.
Bauman DE, Lock AL, Corl BA, Salter AM and Parodi PW, 2006. Milk fatty  acids and human heath: Potential role of conjugated linoleic acid and trans fatty acids. Wageningen Academic Publishers  pp: 523-555.
Besharati  M and Taghizadeh A, 2014. Effect of whole cottonseed, monensin and vitamin E on milk compositions and CLA content of milk fat of lactating dairy cows. International Journal Bioscience 5(12): 420-432.
Bu DP, Wang JQ, Dhiman TR and Liu SJ, 2007. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. Journal of Dairy Science 90: 998–1007.
Chen XJ, Mao HL, Lin J and Liu JX, 2008. Effects of supplemental soybean oil and vitamin E on carcass quality and fatty acid profiles of meat in Huzhou lamb. College of Animal Sciences. Zhejiang University, Hangzhou, PR China, 58: 129-131.
Chouinard PY, Corneau L, Butler W R, Chilliard Y, Drackley JK and Bauman DE, 2001. Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. Journal of Dairy Science 84:680-690.
Corl BA, Baumgard LH, Dwyer DA, Griinari J M, Phillips BS and Bauman DE, 2001. The role of D9-desaturase in the production of cis-9, trans-11 CLA. Journal of Nutritional Biochemistry 12: 622–630.
Delfa R, Teixeira A, Gonzalez C and Blasco I, 1995. Ultrasonic estimates of fat thickness and longissimus dorsi muscle depth for predicting carcass composition of live Aragon lambs. Small Ruminant Research 16:159–164.
Dhiman TR, Helmink ED, McMahon DJ, Fife RL and Pariza MW, 1999. Conjugated linoleic acid content of milk and cheese from cows fed extruded oilseeds. Journal of Dairy Science 82:412–419.
Doreau M, Laverroux S, Normand J, Chesneau G and Glasser F, 2009. Effect of linseed fed as rolled seeds, extruded seeds or oil on fatty acid rumen metabolism and intestinal digestibility in cows. Lipids 44: 53–62.
Erjaei K, Zali A, Ganjkhanloo M and Dehghan-Banadaky M, 1391. Effect of wheat processing with different fat sources on performance, blood and ruminal metabolites of Holstein bull. Journal of Animal Science Researches 22(4): 127-140.
Faldet MA and Salter LD, 1991. Feeding heat-treated full fat soybeans to cows in early lactation. Journal of Dairy Science 74: 3047-3054.
Faldet  MA, Satter LD  and  Broderick GA,  1992a. Determining optimal heat treatment of soybeans by measuring available lysine chemically and biologically with rates to maximize protein utilization by ruminants. Journal of Nutrition 122:151-160.
Fathi Nasri MH, Danesh Mesgaran M, Kebreab E and France J, 2007. Past peak lactational performance of Iranian Holstein cows fed raw or roasted whole soybeans. Canadian Journal of Animal Sciences 87(3): 441-447.
Fathi nsri MH, France J, Danesh Mesgaran M and Kebreab E, 2008. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livestock Science 113: 43-51.
Ferreira EM, Pires AV, Susin I, Mendes CQ, Gentil RS, Araujo RC, Amaral RC, Loerch SC, 2011. Growth, feed intake, carcass characteristics, andeating behavior of feedlot lambs fed high-concentrate diets containing soybean hulls. Journal Animal Science 89: 4120–4126.
Field CJ, Blewett HH, Proctor S and Vine D, 2009. Human health benefits of vaccenic 454 acid. Applied Physiology Nutrition and Metabolism 34: 979-991.
Folch J, Lees M and Sloane-Stanley GC, 1957. A simple method for the isolation and purification of total lipidsfrom animal tissues. Journal of Biological Chemistry 226: 497- 507.
Huang Y, Schoonmaker JP, Bradford BJ and Beitz DC, 2008. Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both. Journal Dairy Science 91: 260–270.
Jenkins TC, 1993. Lipid metabolism in the rumen. Journal of Dairy Science 76: 3851-3863.
Hosseini SM, Ghoorchi T, Torbatinejad NM, Sameie R and Ghorbani B, 1395. Effects of Replacing Different Levels of Full Fat Soybean with Soybean Meal on Performance, Blood Metabolites and Dry Matter Degradation by Nylon Bag Technique in Fattening Zel Lambs. Research on Animal Production 9(19): 17-25.
Imani Rad M, Rouzbehan Y and Rezaei J, 2016. Effect of dietary replacement of alfalfa with urea-treatedalmond hulls on intake, growth, digestibility, microbial nitrogen, nitrogenretention, ruminalfermentation, and blood parameters in fattening lambs. Journal Animal Science 94:349–358.
 Ivan M, Mir PS, Koenig KM, Rode LM, Neill L, Entz T and Mir Z, 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration conjugated linoleic acid in sheep. Small Ruminant Research 41: 215-227.
Kennelly JJ, 1996. The fatty acid composition of milk fat as influeneced by feeding oilseeds. Animal Feed Science Technology 60:137–152.
Khoramtaie R, Nezamabadi M, Harkinezhad T, Eskandari nasab M and Salimi D, 1391. Evaluation of directly and ultrasound measurements of muscle and back fat for prediction of Carcass traits of live animals in Afshari sheep. Journal of Animal Science Researches 22(2): 161-171.
Kim S, Jihong L and Sungkwon P, 2016. Effects of full-fat soybean diet on performance, carcass characteristics ,and fatty acid composition of Hanwoo steers .Turkish Journal of Veterinary and Animal Sciences  40:451-458.
Lashkari S, Azizi O and Jahani H, 2018. Effects of different processing methods of flaxseed on performance, milk fatty acids profile and apparent nutrient digestibility of lactating cows. Journal of of Animal Science Researches 27(4): 105-119.
Madron MS, Peterson DG, Dwyer DA, Corl BA, Baumgard LH, Beermann DH, Bauman DE, 2002. Effect of extruded full-fat soybeans on conjugated linoleic acid content of intramuscular, intermuscular, and subcutaneous fat in beef steers. Journal Animal Science 80(4): 1135-1143.
McNiven MA, Duynisveld J, Charmley E and Mitchell A, 2004. Processing of soybean affects meat fatty acid composition and lipid peroxidation in beef cattle. Animal Feed Science and Technology 116: 175–184.
Metcalf LC, Schmitz AA and Pelka JR,  1966. Rapid preparation of methyl esters from lipid for gas chromatography analysis. Analytical Chemistry 38: 514-515.
Moeller SJ, 2002. Evolution and use of ultrasonic technology in the swine industry. Journal Animal Science 80: 19–27.
Moura LV, Oliveira ER and Fernandes ARM, 2017. Feed efficiency and carcass traits of feedlot lambs supplemented either monensin or increasing doses of copaiba (Copaifera spp.) essential oil. Journal Animal Feed Science and Technology 232:110-118.
Murray RK, Granner DK, Mayes PA and Rodwell VW, 2003. Harper’s Illustrated Biochemistry. McGraw-Hill Companies, Inc. 26th ed.
National Research Council, 2001. Nutrient Requirement of Dairy Cattle, 7th revised. National Academy of Science, Washington, DC.
National Research Council (NRC), 2007. Nutrient requirements of small ruminants. National Academy of Sciences, Washington, DC.
Rabiee AR, Breinhild K, Scott W, Golder HM, Block E and Lean IJ, 2012. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal Dairy Science 95:3225–3247.
Reddy PV, Morrill JL and Bates LS, 1993. Effect of roasting temperatures on soybean utilization by young dairy calves. Journal Dairy Science 76:1387-1393.
Reddy PV, Morrill JL and Nagaraja TG, 1994. Release offree fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities. Journal Dairy Science 77: 3410-3416.
Robles VL, González A, Ferret A, Manteca X and Calsamiglia S, 2007. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Journal Animal Science 85: 2538-2547.
Ruegsegger GJ and Schultz LH, 1985. Response of high producing cows in early lactation to the feeding of heat-treated wholesoybeans. journal Dairy Science 68: 3272–3279.
Palmquist DL, Lock AL, Shingfield KJ and Bauman DE, 2005. Biosynthesis of conjugated linoleicacid in ruminants and humans. Advance Food Nutrition Research 50: 179-216.
Park Y, 2009. Conjugated linoleic acid (CLA): good or bad trans fat? Journal Food Composition Anally 22: S4–S12.
Saleh AS and Saleh HM, 2008. Influence of heet treated soybean seeds in rations of growing lambs performance. Journal Nutrition Feed 11:193-208.
Shingfield KJ and Griinari JM, 2007. Role of biohydrogenation intermediates in milk fat depression. Europian Journal of Lipid Science and Technolegy 109: 799–816.
Silva SR, Gomes MJ, as-da-Silva A, Gil LF and Azevedo JM, 2005. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. Journal Animal Science 83(2):350-357.
Stelzleni AM, Froetschel MA and Pringle TD, 2013. Effects of feeding extruded full-fat cottonseed pellets in placeof tallow as a fat source for finishing heifers on feedlot performance, carcass characteristics, sensory traits, display color, and fatty acid profiles. Journal Animal Science 91(9):4510–4520.
Sterk A, Johansson BEO, Taweel HZH, Murphy M, Van Vuuren AM, Hendriks WH and Dijkstra J, 2011. Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows. Journal of Dairy Science 94: 6078-6091.
Sterk A, Vlaeminck B, van Vuuren AM,  Hendriks WH and Dijkstra J, 2012. Effects of feeding different linseed sources on omasal fatty acid flows and fatty acid profiles of plasma and milk fat in lactating dairy cows. Journal of Dairy Science 95:3149–3165.
Tahmasbi AM, Aazami MH  and Naserian AA, 1396. Effects of substitution of processed soybean seed with soybean meal on performance, nutrient digestibility, and some blood and ruminal parameters in Holstein dairy cows. Journal of Ruminant Research 5(4): 61-72.
Theriault M, Pomar C and Castonguay FW, 2009. Accuracy of real-time ultrasound measurements of total tissue, fat, and muscle depths at different measuring sites in lamb. Journal Animal Science 87(5):1801-1813.
Wilson DE, 1992. Application of ultrasound for genetic improvement. Journal Animal Science 70(3):973-98.
Xu CH, Lee B, Wang J, Hong Z, Kim T, Kang S, Choi N, Roh S  and Choi Y, 2006. Production of lean beef containing a high content of trans-10, cis-12 conjugated linoleic acid by feeding a high-temperature-micro-time-treated diet with extruded soybean. Bioscience, Biotechnology and Biochemistry 70:2589–2597.