تأثیر غلظت‌های مختلف ژله ‌رویال بر ریخت شناسی و آپوپتوزیس اسپرماتوزوای زنبوران نر در زمان‌های مختلف پس از انجماد شیشه‌ای بدون سرما- محافظ به روش قطره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فناوری تولیدمثل در دامپزشکی، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران.

2 استاد بخش مامایی و بیماری های تولید مثل، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران.

3 گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه

چکیده

چکیده:
زمینه مطالعاتی: حفاظت از اسپرم زنبوران نر یک راهبرد مؤثر برای حفاظت از گونه‌ها و تنوع ژنتیکی است. استفاده از رقیق‌کننده‌های طبیعی و روش‌های انجمادی مؤثر برای حفاظت از اسپرم زنبوران نر بسیار مهم است. هدف: هدف از انجام مطالعه حاضر ارزیابی غلظت‌های مختلف ژله ‌‌رویال بر کیفیت اسپرم زنبوران نر پس از انجماد شیشه‌ای بدون سرما محافظ به روش قطره‌ای بود. روش کار: نمونه‌های مایع منی از زنبوران نر بالغ (36 روزه) به روش دستی جمع‌آوری شدند و با غلظت‌های مختلف ژله رویال (0، 5/0، 1، 5/2 و 5 درصد) در داخل محلول پایه اصلاح شده هاپکینز رقیق شدند. سپس با محلول انجمادی 5/0 مولار ساکارز به نسبت 1:1 ترکیب شده و به وسیله سمپلر، مقدار 10 میکرولیتر از اسپرم آماده‌ شده از فاصله 10 سانتی‌متری مستقیماً در نیتروژن مایع ریخته شد و به روش قطره‌ای منجمد شدند. این نمونه‌های اسپرم در زمان‌های مختلف (0، 90 و 300 روز) نگهداری و سپس ذوب شدند. داده‌ها در قالب طرح کاملاً تصادفی با پنج تکرار بررسی و فراسنجه‌های کیفیت اسپرم از جمله ریخت شناسی و آپوپتوزیس در شرایط آزمایشگاهی ارزیابی شدند. نتایج: نتایج نشان داد که بالاترین میزان ریخت شناسی طبیعی و کمترین میزان آپوپتوزیس اسپرم در زمان‌های مختلف (0، 90 و 300 روز) مربوط به گروه ژله رویال 1 % بود. درصد ریخت شناسی طبیعی و آپوپتوزیس اسپرم در گروه‌های ژله رویال 5/0 % و 5/2 % نسبت به گروه‌های دیگر بهتر حفظ شد. نتیجه‌گیری‌ نهایی: با توجه ‌به نتایج به‌دست‌آمده به نظر می‌رسد انجماد و نگهداری اسپرم زنبوران نر با استفاده از انجماد شیشه‌ای بدون سرما محافظ به روش قطره‌ای و با افزودن مکمل 1٪ ژله رویال اثرات مفیدی بر فراسنجه‌های منی زنبوران نر برای استفاده تلقیح‌ مصنوعی ملکه به‌منظور تسریع برنامه‌های اصلاح نژادی و حفظ گرده‌افشان‌های حیاتی بسیار مناسب خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of different concentrations of royal jelly supplementation on the morphology and apoptosis of drone sperm at different times after Cryoprotectant-Free Vitrification by drop method

نویسندگان [English]

  • Ali Akbar Mohammadi 1
  • Adel Saberivand 2
  • hadi hajarian 3
1 1 Ph.D. candidate, Theriogenology section, Dept. Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
2 Theriogenology section, Dept. Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
3 Animal Science Department, Agriculture and Natural Resources Campus, Razi University, Kermanshah
چکیده [English]

Introduction: Honeybees are among the most important pollinators, playing a vital role in the pollination of cultivated plants and wild species. It is estimated that nearly 70% of crop plant species worldwide rely on honeybee pollination. The Farm-to-Fork strategy emphasizes that food production should have a neutral or positive environmental impact, mitigate climate change effects, prevent biodiversity loss, and ensure access to mineral-rich and sustainable food for all citizens. Beekeeping is one agricultural sector that aligns with all these sustainability criteria, as it is essentially climate-neutral and waste-free. However, recent reports of significant colony losses worldwide have raised concerns about the future of honeybees. Additionally, many native honeybee species have been replaced by commercial honeybees, reducing genetic diversity within subspecies of Apis mellifera. Colony losses directly impact genetic diversity. Successful sperm cryopreservation is an effective strategy for preserving honeybee genetic diversity, aiding in the selection of pest- and disease-resistant lines, and preventing further colony losses. The decline or loss of native and non-native bee species can negatively affect agricultural production and ecosystem functioning. Increasing honeybee production globally through improved genetic lines and enhanced colony management is feasible, with genetic traits identified using semen from superior drones. Cryopreservation of bee sperm has been explored as a means of maintaining genetic diversity in honeybee populations. Cryopreserved drone sperm retains viability and fertilization capacity, supporting successful artificial insemination outcomes and contributing to disease-resistant breeding lines and genetic conservation. Royal jelly (RJ), produced by young worker bees, contains water, carbohydrates, proteins, amino acids, lipids, minerals, vitamins, and polyphenols. In 2002, a novel cryoprotectant-free vitrification method for human spermatozoa was introduced, using non-permeable additives like sugars to avoid the osmotic and toxic effects of high cryoprotectant concentrations, preserving sperm acrosome integrity and cytoskeletal structure. Our study aimed to enhance drone sperm preservation by incorporating royal jelly into the cryoprotectant-free vitrification extender.
Materials and Methods: Drone sperm from adult drones (36 days old) was collected using manual inversion. Various concentrations of royal jelly (0%, 0.5%, 1%, 2.5%, and 5%) were added to the extender. After preparation, a micropipette was used to drop 10 µL aliquots of the sperm suspension directly into the cooling agent from a distance of 10 cm. A sphere immediately formed and floated to the surface. After 6 seconds in liquid nitrogen, the sphere solidified and sank to the bottom of the strainer. Once solidified, the spheres were collected, packaged into 1.8 mL cryotubes, and stored in a liquid nitrogen tank for 90 to 300 days before thawing. Thawing was performed by quickly submerging five spheres, one by one (no more than five at a time), into 3 mL of pre-warmed (37°C) Modified Hopkins extender solution, followed by gentle vortexing for 10 seconds. The warmed sperm suspension was then maintained at 37°C in a 5% CO₂ environment for 10 minutes, followed by centrifugation at 1000 g for 10 minutes. The resulting cell pellet was resuspended in 20 µL of Modified Hopkins extender solution for quality evaluation. Data were analyzed using a completely randomized design with five replications. Sperm quality parameters, including morphology and apoptosis, were evaluated in vitro. To assess morphology, two eosin staining methods-crystal violet (acidic) and silver nitrate (alkaline)-were used. Eosin-crystal violet staining was performed according to Kondracki et al. (2005) as this acidic dye effectively stains sperm and is useful for detecting morphological characteristics. Silver nitrate staining was conducted based on the method of Andraszek and Smalec (2011), with morphology evaluation performed on 500 spermatozoa using phase-contrast microscopy at 400× magnification. Results from silver nitrate staining were compared with those from eosin-crystal violet complexes, and only the percentage of normal sperm was reported. Apoptosis was measured using the fluorescein isothiocyanate annexin V apoptosis detection kit with 7-aminoactinomycin D. A total of 500 spermatozoa per sample were analyzed, with only the percentage of apoptotic sperm reported for each treatment.
Results and Discussion: Sperm morphology and apoptosis after vitrification/thawing with different RJ concentrations were evaluated at 0, 90, and 300 days. Our results showed that supplementation with 1% RJ significantly increased the percentage of normal sperm morphology (75.40 ± 3.50) compared to other groups across all storage durations. Lower to moderate concentrations of royal jelly improved sperm morphology, suggesting a stabilizing effect on cell structure and protection against vitrification-induced damage. This effect is likely due to RJ's bioactive compounds, which maintain cell membrane integrity and prevent structural abnormalities. Our findings, in agreement with previous studies, support RJ's antioxidant benefits in reducing apoptosis. This effect was particularly evident with 1% RJ across all time points post-thawing, significantly lowering sperm apoptosis compared to controls. The use of non-penetrating cryoprotectants likely enhanced plasma membrane flexibility during vitrification, reducing apoptosis by preventing damage to sperm DNA and membrane integrity. Conclusion: This study demonstrates that adding royal jelly at a concentration of 1% to vitrification diluents significantly enhances the quality of drone bee sperm preserved via cryoprotectant-free vitrification using the drop method. The notable improvements in normal morphology and reduction in apoptosis highlight RJ’s potential as a beneficial additive to sperm vitrification protocols. Research into drone bee sperm quality presents promising applications, warranting further exploration of advanced methods such as computer-aided sperm analysis, novel fluorescent dyes, multiparametric tests, flow cytometry, and image analysis techniques. These efforts aim to refine vitrification techniques and investigate RJ’s long-term effects on sperm quality and queen fertility-critical factors for sustainable beekeeping and biodiversity conservation.
Keywords: Apoptosis, Cryoprotectant, Drone, Morphology, Royal jelly, Sperm, Vitrification.

کلیدواژه‌ها [English]

  • Apoptosis
  • Cryoprotectant
  • Drone
  • Morphology
  • Royal jelly
  • Sperm
  • Vitrification
Abdelnour S, Abd El‐Hack ME, Alagawany M, Taha AE, Elnesr S, Abd Elmonem OM, Swelum A, 2020. Useful impacts of royal jelly on reproductive sides, fertility rate and sperm traits of animals. Journal of Animal Physiology and Animal Nutrition 104(6): 1798-1808.
Abu D Abu Hassan H, Franken B, Hoffman R, Henkel R, 2012. Accurate sperm morphology assessment predicts sperm function. Andrologia 44: 571-577.
Aizpurua J, Medrano L, Enciso M, Sarasa J, Romero A, Fernández MA, Gómez-Torres MJ, 2017. New permeable cryoprotectant-free vitrification method for native human sperm. Human Reproduction 32(10): 2007-2015.
Alcay S, Cakmak S, Cakmak I, Mulkpinar E, Gokce E, Ustuner B, Sen H, Nur Z, 2019. Successful cryopreservation of honey bee drone spermatozoa with royal jelly supplemented extenders. Cryobiology 87: 28-31.
Alcay S, Toker N, Onder T, Gokce E, 2017. Royal jelly supplemented soybean lecithin-based extenders improve post-thaw quality and incubation resilience of goat spermatozoa. Cryobiology 74: 81-85.
Amer M, Ismail S, GamalEl Din EF, Rashad EZ, Abd El Hakim W, Ragab A, 2021. Effect of cryoprotectant-free vitrification versus conventional freezing on human testicular sperm motility: a prospective comparative study. Human Fertility 24(5): 389-394.
Andraszek K, Smalec E, 2011. The use of silver nitrate for the identification of spermatozoon structure in selected mammals. Canadian Journal of Animal Science 91(2): 239-246.
Anjos C, Santos AL, Duarte D, Matias D, Cabrita E, 2021. Effect of trehalose and sucrose in post-thaw quality of Crassostrea angulata sperm. Frontiers in Physiology 12: 749735.
Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS, 2023. Current status of the bioactive properties of royal jelly: a comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules 28(3): 1510.
Bouayed J, Bohn T, 2010. Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity 3(4): 228-237.
Bucak MN, Sarıözkan S, Tuncer PB, Sakin F, Ateşşahin A, Kulaksız R, Çevik M, 2010. The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Ruminant Research 89(1): 24-30.
Çakmak S, Nur Z, 2015. Effects of various cryoprotective agents on post-thaw drone semen quality. Theriogenology 83(4): 698-704.
Clermont A, Eickermann M, Kraus F, Georges C, Hoffmann L, Beyer M, 2014. A survey on some factors potentially affecting losses of managed honey bee colonies in Luxembourg over the winters 2010/2011 and 2011/2012. Journal of Apicultural Research 53(1): 43-56.
Cobey SW, Tarpy DR, Woyke J, 2013. Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research 52(4): 1-18.
Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA, 2021. Health promoting properties of bee royal jelly: Food of the queens. Nutrients 13(2): 543.
Collins A, Donoghue A, 1999. Viability assessment of honey bee, Apis mellifera, sperm using dual fluorescent staining. Theriogenology 51(8): 1513-1523.
Collins AM, 2000. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31(3): 421-429.
Collins AM, 2004. Functional longevity of honey bee, Apis mellifera, queens inseminated with low viability semen. Journal of Apicultural Research 43(4): 167-171.
El-Nekeety A, El-Kholy W, Abbas NF, Ebaid A, Amra HA, Abdel-Wahhab MA, 2007. Efficacy of royal jelly against the oxidative stress of fumonisin in rats. Toxicon 50(2): 256-269.
Elsheshtawy R, El-Aziz A, Tamer I, Nasr SM, 2023. Comparative study of royal jelly, turmeric, and wheat germ extenders on the cryosurvivability, sperm resistance, antioxidants, and fertility in cattle bulls. Egyptian Journal of Veterinary Sciences 54(5): 883-893.
Essani K, 2019. Stressing Cells: The Role of Cryoprotectants in ATMP Cryopreservation.
Garner D, Johnson L, Yue S, Roth B, Haugland R, 1994. Dual DNA staining assessment of bovine sperm viability using SYBR‐14 and propidium iodide. Journal of Andrology 15(6): 620-629.
Gatimel N, Moreau J, Parinaud J, Léandri R, 2017. Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology 5(5): 845-862.
Gül A, Şahinler N, Onal AG, Hopkins BK, Sheppard W S, 2017. Effects of diluents and plasma on honey bee (Apis mellifera L.) drone frozen-thawed semen fertility. Theriogenology 101: 109-113.
Gulov A, Kolchaeva I, 2023. Long-term cooling (for a year or more) the sperm of honey bee drones. Russian Agricultural Sciences 49(5): 536-541.
Hadavand Mirzaei A, Deldar H, Ansari Pirsaraei Z, Shohreh B, 2021. Royal jelly may improve sperm characteristics during preservation of rooster semen: Gene expression of antioxidant enzymes. Reproduction in Domestic Animals 56(4): 658-666.
Hopkins BK, Herr C, 2010. Factors affecting the successful cryopreservation of honey bee (Apis mellifera) spermatozoa. Apidologie 41(5): 548-556.
Hopkins BK, Herr C, Sheppard WS, 2012. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen. Reproduction, Fertility and Development 24(8): 1079-1083.
Iljenkaite A, Kerzienė S, Dauksiene A, Mikniene Z, Žilinskas H, Sutkeviciene N, 2020. The effect of royal jelly on boar sperm viability and motility during liquid storage for 96 hours. Acta Veterinaria Brno 89(1): 47-53.
Isachenko V, Rahimi G, Mallmann P, Sanchez R, Isachenko E, 2019. Technologies for Cryoprotectant-Free Vitrification of Human Spermatozoa: Asepticity as a Criterion for Effectiveness. In In Vitro Fertilization: A Textbook of Current and Emerging Methods and Devices: 643-654.
Karadeniz A, Simsek N, Karakus E, Yildirim S, Kara A, Can I, Kisa F, Emre H, Turkeli M, 2011. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin. Oxidative Medicine and Cellular Longevity 2011.
Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I, 2018. Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. Oxidative Medicine and Cellular Longevity 2018.
Kondracki S, Banaszewska D, Mielnicka C, 2005. The effect of age on the morphometric sperm traits of domestic pigs (Sus scrofa domestica). Cell Mol Biol Lett 10(1): 3-13.
Liu JR, Yang YC, Shi LS, Peng CC, 2008. Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of Agricultural and Food Chemistry 56(23): 11447-11452.
Liu X, Xu Y, Liu F, Pan Y, Miao L, Zhu Q, Tan S, 2021. The feasibility of antioxidants avoiding oxidative damages from reactive oxygen species in cryopreservation. Frontiers in Chemistry 9: 648684.
Lodovici M, Guglielmi F, Meoni M, Dolara P, 2001. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology 39(12): 1205-1210.
Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P, 2002. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Human Reproduction 17(5): 1257-1265.
Murray K A, Gibson M I, 2022. Chemical approaches to cryopreservation. Nature Reviews Chemistry 6(8): 579-593.
Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, 2002. Vitrification of human spermatozoa without cryoprotectants. CryoLetters 23(2): 93-102.
Pegg D, 2002. The history and principles of cryopreservation. Seminars in Reproductive Medicine, Copyright© 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York.
Pettis JS, Rice N, Joselow K, vanEngelsdorp D, Chaimanee V, 2016. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PloS One 11(2): e0147220.
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE, 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25(6): 345-353.
Power K, D’Anza E, Martano M, Albarella S, Ciotola F, Peretti V, Maiolino P, 2019. Morphological and morphometric analysis of the Italian honeybee (Apis mellifera ligustica) spermatozoa: A preliminary study in Campania region. Nucleus 4: 0.61.
Rahnama G, Deldar H, Ansari Pirsaraei Z, Kazemifard M, 2020. Oral administration of royal jelly may improve the preservation of rooster spermatozoa. Journal of Animal Physiology and Animal Nutrition 104(6): 1768-1777.
Ricker J, Linfor J, Delfino W, Kysar P, Scholtz E, Tablin F, Crowe J, Ball B, Meyers S, 2006. Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants. Biology of Reproduction 74(2): 359-365.
Saberivand A, Pashapour S, Noghani AE, Namvar Z, 2022. Synergistic effect of royal jelly in combination with glycerol and dimethyl sulfoxide on cryoprotection of Romanov ram sperm. Cryobiology 104: 87-97.
Shahzad Q, Mehmood MU, Khan H, Husna A ul, Qadeer S, Azam A, Naseer Z, Ahmad E, Safdar M, Ahmad M, 2016. Royal jelly supplementation in semen extender enhances post-thaw quality and fertility of Nili-Ravi buffalo bull sperm. Animal Reproduction Science 167: 83-88.
Silici S, Ekmekcioglu O, Eraslan G, Demirtas A, 2009. Antioxidative effect of royal jelly in cisplatin-induced testes damage. Urology 74(3): 545-551.
Soroker V, Hetzroni A, Yakobson B, David D, David A, Voet H, Slabezki Y, Efrat H, Levski S, Kamer Y, 2011. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 42(2): 192-199.
Tarliyah L, Boedino A, Walujo D, 1999. Motility of honeybee Apis mellifera L. spermatozoa in various storage temperature in dilution media containing different glucose levels. Media Veteriner 6: 15-20.
Tarpy DR, Olivarez Jr R, 2014. Measuring sperm viability over time in honey bee queens to determine patterns in stored-sperm and queen longevity. Journal of Apicultural Research 53(4): 493-495.
Wang M, Todorov P, Wang W, Isachenko E, Rahimi G, Mallmann P, Isachenko V, 2022. Cryoprotectants-free vitrification and conventional freezing of human spermatozoa: a comparative transcript profiling. International Journal of Molecular Sciences 23(6): 3047.
Wang Y, Wang Z, Liu X, Chi X, Xu B, 2023. Effects of sucrose feeding on the quality of royal jelly produced by honeybee Apis mellifera L. Insects 14(9): 742.
Wegener J, Bienefeld K, 2012. Toxicity of cryoprotectants to honey bee semen and queens. Theriogenology 77(3): 600-607.