بررسی تنوع ژنتیکی و همخونی در جمعیت های گاو شیری و گوشتی با استفاده از نشانگرهای مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهدف ایران

چکیده

افزایش همخونی بسیاری از صفات تولیدی را تحت تاثیر قرار داده و قدرت انتخاب ژنتیکی را محدود می‌سازد. هدف: این مطالعه با هدف بررسی تنوع ژنتیکی و برآورد همخونی در 16 نژاد مختلف گاو شامل نژادهای شیری (هلشتاین، براوون سوئیس، جرسی و گرنزی)، گوشتی آمریکایی (آنگوس‫، بیف مستر، برهمن و سانتا)، گوشتی اروپایی (هرفورد، لیموزین، شاروله و رومانگولا) و سایر نژادهای گوشتی (گیر، داما، نلور و پیدمونتست) انجام شد. روش کار: در این مطالعه از ضرایب همخونی (FGRM، FHOM و FROH)، عدم تعادل پیوستگی (LD) اندازه موثر جمعیت(Ne) به منظور بررسی تنوع ژنتیکی و برآورد همخونی استفاده شد. اطلاعات ژنومی مربوط به نژادهای فوق که با چیپ 700 کیلوبازی تعیین ژنوتیپ شده بودند از پایگاه اطلاعاتی Widde استخراج گردید. تجزیه و تحلیل داده‌ها توسط نرم‌افزارplink انجام و گراف‌ها با استفاده از بسته ggplot2 در محیط نرم‌افزار R v.3.6.2 رسم شد. ‬‬نتایج: نتایج هتروزایگوسیتی مورد انتظار و مشاهده شده و حداقل فراوانی آللی نشان داد بیشترین تنوع ژنتیکی در نژادهای بیف مستر و سانتا و کمترین تنوع ژنتیکی در نژادهای داما و نلور بود. همخونی به روش FGRM در نژادهای مختلف گوشتی آمریکایی، اروپایی و سایر نژادها نشان دهنده تنوع ژنتیکی مشابه در این نژادها بود. بیشترین میزان تنوع ژنتیکی مربوط به نژاد پیدمونتست و کمترین آن متعلق به نژادهای آنگوس و هرفورد بود. میزان هم خونی به روش FHOM تا حدودی با الگوی حاصل از FGRM تطابق داشت. میزان همخونی محاسبه شده به روش FROH نسبت به دو روش دیگر بیشتر بود. بیشترین میزان FROH در نژادهای جرسی و هرفورد و کمترین میزان FROH در نژادهای پیدمونتست و داما مشاهده شد. نتایج نشان داد که مقدار LD در نژادهای شیری نسبت به نژادهای گوشتی بیشتر است، که نشان دهنده تنوع ژنتیکی کمتر در نژادهای شیری بود. با توجه به نتایج LD، بیشترین میزان تنوع ژنتیکی مربوط به نژاد برهمن و کمترین میزان تنوع ژنتیکی مربوط به نژاد گرنزی بود. نتایج اندازه موثر جمعیت نشان داد که اندازه موثر جمعیت در نسل‌های اخیر در نژادهای شیری کمتر از نژادهای گوشتی می‌باشد. بیشترین اندازه موثر در بین نژادهای گوشتی متعلق به نژاد پیدمونتست و لیموزین و کمترین آن متعلق به نژاد بیف مستر بود. همچنین، بیشترین اندازه موثر در بین نژادهای شیری متعلق به نژاد هلشتاین و کمترین آن متعلق به نژاد براون سویس بود. نتیجه‌گیری نهایی: به طور کلی میزان تنوع ژنتیکی در نژادهای گوشتی نسبت به نژادهای شیری بیشتر بود. مهم ترین دلیل این موضوع هم می تواند به استفاده گسترده تر از تعداد محدودی اسپرم در تلقح مصنوعی نژادهای گاو شیری مربوط باشد. این موضوع در راستای شدت بالای انتخاب در جمعیت‫های گاو شیری به منظور تولید شیر و فراورده‌های لبنی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Genetic Diversity and Inbreeding in Dairy and Beef Cattle Populations Using Molecular Markers

نویسندگان [English]

  • Behshad Barzanooni 1
  • Sadegh Taheri 1
  • Saeed Zerehdaran 2
1 Animal Science department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Animal Science department, Faculty of Agriculture, Ferdowsi university of Mashhad, Mashhad, Iran
چکیده [English]

Introduction: Alongside the enhancement of economic traits through genetic advancements, it is imperative to preserve genetic diversity within cattle populations. This diversity is essential for adapting to future environmental and economic changes, as well as for ensuring a robust response to trait selection (Barker, 2001). Genetic diversity forms the foundation of successful breeding programs and includes the genetic variations among individuals, families, or populations. The increase in inbreeding rates has become one of the most significant challenges in the dairy farming industry over the past few decades. Inbreeding negatively affects animal performance, leading to reduced longevity. Some researchers have indicated that even a 1% increase in the inbreeding coefficient can significantly decrease milk production, milk composition, and reproduction performance. The primary reason for the rising inbreeding coefficient is the frequent use of specific sperm through artificial insemination in dairy farms. Single nucleotide polymorphism (SNP) markers, indicating mutations at a single base in the genome, are extensively utilized in livestock populations. These markers play a pivotal role in assessing genetic diversity among breeds, verifying the purity of livestock products, pinpointing genes linked to significant economic traits, and estimating breeding values (Yang et al., 2013). To estimate inbreeding coefficients, various methods are available, including those based on the genomic relationship matrix (FGRM), homozygosity (FHOM), and homozygosity blocks (FROH). In studies of genetic diversity, linkage disequilibrium (LD) reflects the non-random association of alleles at different genetic locations. Monitoring changes in linkage disequilibrium serves as an indicator of selection shifts over time (De Roos et al., 2008). Furthermore, identifying linkage disequilibrium or haplotype blocks facilitates the design of association studies and the detection of genetic diversity in quantitative traits (Khatkar et al., 2007). A critical statistic for evaluating genetic diversity is the effective population size (Ne), which represents the number of individuals in an ideal population that affect gene frequency changes in subsequent generations (Gutiérrez et al., 2009). Ne is vital in population genetics due to its direct correlation with inbreeding and the decline in genetic diversity within a population. Ultimately, understanding the genetic diversity of existing populations is essential for effective selection and the implementation of breeding programs at breeding stations. This research aims to investigate genetic diversity and estimate inbreeding in various dairy and beef cattle breeds using molecular markers. The study will involve estimating the genomic inbreeding coefficient, examining linkage disequilibrium, and determining effective population size.
Materials and Methods: This study utilized genomic information from 16 cattle breeds, categorized into four groups: Dairy Breeds (Holstein, Brown Swiss, Jersey, and Guernsey), American Beef Cattle Breeds (Angus, Beef Master, Brahman, and Santa), European Beef Cattle Breeds (Hereford, Limousine, Charolais, and Ramangoula), and Beef Cattle Breeds from Other Regions (Gir, N-Dama, Nellore, and Piedmonts). Blood samples from all breeds were genotyped using a 700k SNP chip, and genomic data was extracted from the Widde database. Quality control of the genotype data was performed using Plink v1.9 (Purcell et al., 2007). Principal component analysis (PCA), based on a genomic relationship matrix, was conducted to provide a general overview of the genetic structure of the breeds, using R v.3.6.2. PCA was also employed to identify and remove outlier samples from each genetic group. Inbreeding coefficients (FGRM, FHOM, and FROH) were estimated using Plink v.1.9 (Purcell et al., 2007) within the R environment v.3.6.2. Additionally, to assess genetic diversity, linkage disequilibrium (LD) and effective population size (Ne) statistics were estimated using Plink v.1.9 (Purcell et al., 2007) and SnePv1.1 (Barbato et al., 2015).
Results and Discussion: The analysis of observed and expected heterozygosity, along with the minor allele frequency, highlighted that the Beef Master and Santa breeds displayed the highest levels of genetic diversity, while the N-Dama and Tellor breeds had the lowest. The amount of FGRM across various American, European, and other meat breeds indicated different genetic structure among studied populations, showed similar patterns in genetic diversity within these groups. Among the breeds examined, Piedmonts exhibited the highest genetic diversity, whereas Angus and Hereford showed the lowest. The distribution and frequency of the calculated FHOM aligned with the patterns observed in FGRM. In dairy breeds, genetic diversity was notably lower, especially in the Jersey breed, and the Piedmonts breed again exhibiting the highest diversity in this context. European meat breeds demonstrated greater genetic diversity compared to other meat breeds. The inbreeding estimates derived from the FROH method were higher than those obtained from the other two methods. Notably, the Jersey and Hereford breeds had the highest values of estimated FROH, while the Piedmonts and N-Dama breeds had the lowest. Linkage disequilibrium (LD) analysis revealed that LD values decreased as the distance between markers increased across all populations studied. Additionally, LD was higher in dairy breeds than in meat breeds, suggesting greater selection pressure and reduced genetic diversity within dairy cattle breeds. Among the breeds, the Brahman exhibited the highest genetic diversity, while the Guernsey had the lowest. The study also indicated that the effective population size (Ne) in dairy breeds has been lower than in meat breeds over recent generations, with similar patterns of reduction observed among meat breeds. Within the meat breeds, Piedmonts and Limousin had the highest Ne, whereas the Beef Master breed had the lowest. Among dairy cattle breeds, Holstein exhibited the highest Ne, while Brown Swiss showed the lowest.
Overall, these findings suggested that genetic diversity is greater in meat breeds compared to dairy breeds, reflecting the intense selection pressure aimed at improving milk production in dairy populations. It is crucial to establish appropriate breeding programs to enhance genetic diversity in livestock, particularly in dairy species, to reduce the risks of increasing inbreeding and the potential decline in productive traits.

کلیدواژه‌ها [English]

  • Genetic Diversity
  • Dairy and Beef cattle
  • Inbreeding
  • FROH
  • FGRM
  • LD
  • Ne
 
Addo S, Klingel S, Thaller G, Hinrichs D. 2021. Genetic diversity and the application of runs of homozygosity-based methods for inbreeding estimation in German White-headed Mutton sheep. PLoS ONE. 16:e0250608. doi: 10.1371/journal.pone.0250608
Al-Mamun HA, Clark S, Kwan P and Gondro C, 2015. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, 47, 1-14.
Baes, C, Makanjuola, B, Miglior, F, Marras, G, Howard, J, Fleming, A and Maltecca, C. 2019. Symposium review: the genomic architecture of inbreeding: how homozygosity affects health and performance. Journal of Dairy Science 102, 2807–2817.
Barbato M, Orozco-terWengel P, Tapio M and Bruford MW, 2015. SNP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics, 6, 109.
Barker JS, 2001. Conservation and management of genetic diversity: a domestic animal perspective. Canadian Journal of Forest Research, 31(4), 588-595.
Falconer D and Mackay T, 1996. Introduction to Quantitative Genetics4th ednAddison-Wesley Longman: Harlow.
Fallahi MH, Shahrbabak HM, Shahrbabak MM. and Arpanahi RA, 2018. Investigation of effective population, linkage disequilibrium and haplotype block structure in Azerbaijani breed buffalo using high density SNP markers. Iranian Journal of animal Science, 49(2), 247-255.
Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M and Nezer C, 2000. Extensive genome-wide linkage disequilibrium in cattle. Genome Research. 10(2):220-7.
Frankham R, Bradshaw CJ and Brook BW, 2014. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63.
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M and Liu-Cordero SN, 2002. The structure of haplotype blocks in the human genome. Science. 296(5576):2225-9.
Gazal, S., Finucane, H., Furlotte, N. et al. 2.17. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nature Genetics 49, 1421–1427. https://doi.org/10.1038/ng.3954.
Glazko V, 2003. An attempt at understanding the genetic basis of domestication. Animal Science Papers and Reports, 21(2), 109-120.
Gutiérrez-Reinos MA, Aponte PM, and García-Herreros M, 2022. A review of inbreeding            depression in dairy cattle: Current status, emerging control strategies, and future prospects
Journal of Dairy Research, 89, pp. 1-10.
Hill WG, 1974. Estimation of linkage disequilibrium in randomly mating populations. Heredity, 33(2), 229-239.
Hill WG and Robertson A, 1968. The effects of inbreeding at loci with heterozygote advantage. Genetics, 60(3), 615.
Illa SK, Mumtaz S, Mukherjee S, Nath S and Mukherjee A, 2022. Genome-wide evaluation of runs of homozygosity in Indian Sahiwal cattle. In Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP) Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges (pp. 902-905). Wageningen Academic Publishers.
Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JA, Barris W, McClintock AE, McClintock S, Thomson PC, Tier B and Nicholas FW, 2007. A primary assembly of a bovine haplotype block map based on a 15,036-single-nucleotide polymorphism panel genotyped in Holstein–Friesian cattle. Genetics. 176(2):763-72.
Kim ES, Sonstegard TS, Van Tassell CP, Wiggans G and Rothschild MF, 2015. The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection. PloS One, 10(7), e0129967.
Kreitman M, 2000. Methods to detect selection in populations with applications to the human. Annual Review of Genomics and Human Genetics, 1(1), 539-559.
Lacy RC, Ballou JD, Starfield A, Thompson E and Thomas A, 1995. Pedigree analysis for population management. in Population Management for Survival and Recovery, edited by Ballou, Jonathan D., Gilpen, M., and Foose, T. J., 57–75. New York: Columbia University Press.
Lozada-Soto EA, Maltecca C, Cole JB, Van Raden PM and Tiezzi F, 2022. Current state of inbreeding, genetic diversity, and selection history in all major breeds of US dairy cattle. Journal of Dairy Science. 105, 188-188.
Makanjuola, B.O.; Miglior, F.; Abdalla, E.A.; Schenkel, F.S.; Baes, C.F. 2020. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. Journal of Dairy Science. 103, 5183–5199.
Mastrangelo S, Tolone M, Di Gerlando R, Fontanesi L, Sardina MT and Portolano B, 2016. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, 10(5), 746-754.
Mohammadi H and Shamsollahi M, 2024. Estimation of genomic inbreeding coefficient, detection of ROH Islands and Related Genes in different Egyptian sheep breeds adapted to different environment. Iranian Journal of Animal Science, 55(1), 95-109.
Mokry FB, Buzanskas ME, de Alvarenga Mudadu M, do Amaral Grossi D, Higa RH, Ventura RV, de Lima AO, Sargolzaei M, Conceição Meirelles SL, Schenkel FS and da Silva MV, 2014. Linkage disequilibrium and haplotype block structure in a composite beef cattle breed. BMC Genomics. 15:1-9.
Mulim HA, Brito LF, Pinto LFB, Ferraz JBS, Grigoletto L, Silva MR and Pedrosa VB, 2022. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics, 23(1), 209.
Ohta T and Kimura M, 1971. Linkage disequilibrium between two segregating nucleotide sites under the steady flux of mutations in a finite population. Genetics, 68(4), 571.
Oliehoek PA, Windig JJ, Van Arendonk JA and Bijma P, 2006. Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics, 173(1), 483-496.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ and Sham PC, 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics. 81(3):559-75.
Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R and Lander ES, 2001. Linkage disequilibrium in the human genome. Nature. 411(6834):199-204.
Schiavo, G.; Bovo, S.; Ribani, A.; Moscatelli, G.; Bonacini, M.; Prandi, M.; Mancin, E.; Mantovani, R.; Dall’Olio, S.; Fontanesi, L. 2022. Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region. Journal of Dairy Science. 105, 2408–2425.
Schöpke, K., Swalve, H.H. 2016. Review: Opportunities and challenges for small populations of dairy cattle in the era of genomics. Animal 2016, 10, 1050–1060.
Selvaggi M, Dario C, Peretti V, Ciotola F, Carnicella D and Dario M, 2010. Inbreeding depression in Leccese sheep. Small Ruminant Research, 89(1), 42-46.
Senczuk, G.; Mastrangelo, S.; Marsan, P.A.; Becskei, Z.; Colangelo, P.; Colli, L.; Ferretti, L.; Karsli, T.; Lancioni, H.; Lasagna, E.; et al. 2020. Into the origin and diversification of Podolian cattle breeds by testing Neolithic scenarios of European colonization using genome-wide SNP data. Authorea.
DOI: 10.22541/au.160303335.52950496/v1
Shakeri R, Javanmard A, Hasanpur K, Abbasi M, Khansefid M and Rahimi Varposhti M, 2021. Assessment of genetic diversity within Holstein population using bovine SNP chip data. Research on Animal Production, 12(32), 140-149.
Sørensen AC, Sørensen MK and Berg P, 2005. Inbreeding in Danish dairy cattle breeds. Journal of Dairy Science, 88(5), 1865-1872.
Srikanth K, Neupane M, Jaafar MA, Wolfe CW, Huson HJ, Van Tassell CP and Blackburn HD, 2022. Genetic diversity and inbreeding in US Jersey population and germplasm collection. In Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP) Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges (pp. 1029-1032). Wageningen Academic Publishers.
Taheri S, Saedi N, Zerehdaran S and Javadmanesh A, 2023. Identification of selection signatures in Capra hircus and Capra aegagrus in Iran. Animal Science Journal, 94(1), e13864.
Taheri S, Zerehdaran S and Javadmanesh A, 2022. Genetic diversity in some domestic and wild sheep and goats in Iran. Small Ruminant Research, 209, 106641.
VanRaden PM, 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423.
Villa-Angulo R, Matukumalli LK, Gill CA, Choi J, Van Tassell CP and Grefenstette JJ, 2009. High-resolution haplotype block structure in the cattle genome. BMC Genetics, 10, 1-13.
Wang, J., Santiago, E. and Caballero, A. 2016. Prediction and estimation of effective population size. Heredity 117, 193–206. https://doi.org/10.1038/hdy.2016.43.
Weigel KA and Lin SW, 2000. Use of computerized mate selection programs to control inbreeding of Holstein and Jersey cattle in the next generation. Journal of Dairy Science, 83(4), 822-828.
Weir BS and Hill WG, 1980. Effect of mating structure on variation in linkage disequilibrium. Genetics, 95(2), 477-488.
Wilson KE, 2021. Genomic analysis of the effects of inbreeding on size and reproductive traits across four generations of Nellore-Angus crossbred cattle (Doctoral dissertation).
Wirth A, Duda J, Emmerling R, Gotz KU, Birkenmaier F, Distl O. 2024. Analyzing runs of homozygosity reveals patterns of selection in German brown cattle. Genes. 15(8):1051.
Wright S, 1948. Genetics of populations. Encyclopaedia Britannica.10:111-A-D-112.
Yang W, Kang X, Yang Q, Lin Y and Fang M, 2013. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology, 4, 1-6.
Zsolnai, A.; Maróti-Agóts, Á.; Kovács, A.; Bâlteanu, A.; Kaltenecker, E.; Anton, I. 2020. Genetic position of Hungarian Grey among European cattle and identification of breed-specific markers. Animal, 14, 1786–1792.