اثر استفاده از ال-کارنیتین در جیره‌های حاوی روغن ماهی بر عملکرد، پارامترهای آنتی‌اکسیدانی و فراسنجه‌های لیپیدی سرم و زرده تخم‌مرغ در مرغ‌های تخم‌گذار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 استادیار گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

3 دانشیار گروه علوم دامی دانشگاه ارومیه

چکیده

پژوهش حاضر با هدف بررسی اثر مکمل سازی ال-کارنیتین در جیره‌های حاوی سطوح مختلف روغن ماهی بر عملکرد، پارامترهای آنتی‌اکسیدانی خون و کبد و فراسنجه‌های لیپیدی سرم و زرده تخم‌مرغ در مرغ‌های تخم‌گذار انجام شد. بدین منظور از تعداد 432 قطعه مرغ تخم‌گذار (Hy-line-W36، سن 70 هفتگی) در قالب طرح فاکتوریل 3 × 3، با 6 تکرار و 8 قطعه پرنده در هر تکرار استفاده شد. تیمارهای آزمایشی شامل جیره‌های حاوی 3 سطح روغن ماهی (صفر، 5/1 و 3 درصد جیره) و 3 سطح ال-کارنیتین (صفر، 300 و 600 میلی‌گرم در کیلوگرم جیره) بودند. نتایج نشان داد که مرغ‌های تیمار 3 درصد روغن ماهی و 300 و 600 میلی‌گرم ال-کارنیتین بیشترین درصد تولید، وزن و توده تخم‌مرغ را داشتند که به‌طور معنی‌دار از تیمار بدون روغن ماهی و ال-کارنیتین بیشتر بود. جیره‌های حاوی 5/1 و 3 درصد روغن ماهی باعث کاهش ظرفیت آنتی‌اکسیدانی کل کبد و سرم و افزایش مالون دی‌آلدئید سرم شدند که استفاده از 300 و 600 میلی‌گرم بر کیلوگرم ال-کارنیتین در این جیره‌ها ظرفیت آنتی‌اکسیدانی کل را افزایش و مالون‌دی‌آلدئید را کاهش داد. اثر متقابل ال-کارنیتین و روغن ماهی اثرات هم‌افزایی بر غلظت تری‌گلیسرید، کلسترول و LDL سرم داشتند و سطح 5/1 و 3 درصد روغن ماهی همراه با 300 و 600 میلی‌گرم ال-کارنیتین غلظت تری-گلیسرید، کلسترول و LDL سرم را به طور معنی‌دار کاهش دادند. اثرات اصلی ال-کارنیتین در سطح 300 و 600 میلی‌گرم ال-کارنیتین باعث کاهش غلظت کلسترول زرده و افزایش HDL سرم شد. چنین نتیجه گیری می شود که به هنگام استفاده از سطح بالای روغن ماهی در تغذیه مرغ‌ های تخمگذار، مکمل سازی جیره با حداقل 300 میلیگرم در کیلوگرم ال-کارنیتین اثرات بهتری بر پارامترهای آنتی اکسیدانی پرنده خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of using L-carnitine in diets containing fish oil on performance, antioxidant parameters, and serum and egg yolk lipid parameters in laying hens

نویسندگان [English]

  • Ali Mahdi dhihab 1
  • mohsen daneshyar 1
  • Hamed Khalilvandi-Behroozyar 3
1 Department of Animal Science, Urmia University, Urmia, Iran.
2
3 Associate Professor, Department of Animal science, Urmia University
چکیده [English]

Introduction: Oils have multiple effects, including improved palatability, increased feed intake, safety, and performance (Stovanovic et al., 2018). Compared to broilers, the amount of oil added to the diet of laying hens is lower because laying hens have a unique physiological status and are more susceptible to lipid metabolism disorders than broilers (Gao et al., 2021). Omega-3 fatty acids play an important role in human nutrition due to their reduced incidence of cardiovascular and inflammatory diseases (Roohanipour et al., 2022). Fish oil is one of the main sources of omega-3 polyunsaturated fatty acids, especially long-chain ones. The fatty acid profile of this oil shows that more than 30% of its fatty acids are omega-3 polyunsaturated fatty acids (Kartal et al., 2003). However, products containing higher proportions of omega-3 fatty acids make them more susceptible to lipid peroxidation, which is an undesirable characteristic (Bassels et al., 2000). The fatty acid profile of the oil plays a role in the susceptibility of oils to oxidation, as unsaturated fatty acids, and especially unsaturated fatty acids with multiple double bonds, are more susceptible to lipid peroxidation than saturated fatty acids (Weissman et al., 1998). Therefore, the use of antioxidants in diets containing fish oil seems to be crucial. Recently, the antioxidant role of L-carnitine has also been considered. L-carnitine is reported to be a potent antioxidant that reduces oxidative damage while enhancing antioxidant enzyme activity, thus protecting cells from damage (Mansouri et al., 2024). In recent years, although fish oil has been used to enrich eggs with omega-3 fatty acids and even its positive effects on egg-laying physiology, its storage and oxidation problems have always been a matter of debate. Therefore, the present study was conducted to investigate the effect of L-carnitine supplementation in diets containing different levels of fish oil on the antioxidant function and parameters of blood and liver, and serum and egg yolk lipid parameters in aged laying hens.
Materials and methods: In this study, 432 laying hens (Hy-line-W36, 65 weeks of age) were used. Birds with similar body weight (1530 ± 50 g) were selected and allocated in a 3 × 3 factorial design with 6 replications and 8 birds per replication. In order to adapt to the experimental conditions, the birds were first fed with the basal diet for 2 weeks and then with the experimental treatments for 8 weeks (56 days). The experimental treatments included diets containing 3 levels of fish oil (0, 1.5 and 3% of the diet) and 3 levels of L-carnitine (0, 300 and 600 mg/kg of the diet), which were adjusted according to the nutritional recommendations of the Hy-line-W36 strain in 2020. To evaluate performance indicators, eggs were collected twice a day (10 am and 4 pm) and the number and total weight of eggs were recorded at the end of each day. Egg mass, feed intake and feed conversion ratio were calculated weekly. To evaluate blood parameters, two serum samples from each replicate (12 samples per treatment) were prepared at the end of the experimental period. To evaluate the antioxidant status of the liver, at the end of the experimental period, 6 chickens from each treatment were slaughtered and after opening the carcass, the livers of the birds were separated and sent to the laboratory to evaluate the antioxidant status. To measure yolk lipids, 100 mg of egg yolk was mixed with 2.5 ml of NaOH solution using a digital scale and neutralized with 2.5 ml of HCl solution (after 24 hours). The samples (liver, yolk and serum) were tested using an automatic analyzer and kits prepared from Pars Azmoun Company. Serum lipids were measured at a wavelength of 550 nm based on the enzymatic method and serum and liver antioxidant parameters were measured based on the methods recommended by the kit manufacturer. All data from this experiment were statistically analyzed in the form of a 3x3 factorial test using SAS software and the Mixed procedure.
Results and discussion: The results showed that hens treated with 3% fish oil and 300 and 600 mg L-carnitine had the highest percentage of production, weight and egg mass, which was significantly higher than the treatment without fish oil and L-carnitine. The feed conversion ratio also increased in the treatments without L-carnitine supplementation compared to the other experimental treatments (P<0.05). Diets containing 1.5 and 3% fish oil caused a decrease in the total antioxidant capacity of the liver and serum and an increase in serum malondialdehyde, which the use of 300 and 600 mg L-carnitine in these diets increased the total antioxidant capacity and reduced malondialdehyde. Also, the main effects of fish oil and L-carnitine showed that 3% fish oil increased liver malondialdehyde levels and 300 and 600 mg L-carnitine increased the activities of superoxide dismutase and glutathione peroxidase enzymes compared to the control treatment (P<0.05). The interaction of L-carnitine and fish oil had synergistic effects on serum triglyceride, cholesterol, and LDL concentrations, and 1.5 and 3% fish oil levels along with 300 and 600 mg L-carnitine significantly reduced serum triglyceride, cholesterol, and LDL concentrations. The main effects of L-carnitine at 300 and 600 mg L-carnitine levels decreased yolk cholesterol concentrations and increased serum HDL (P<0.05).
Conclusion: In general, according to the results obtained, the present researchers recommend using 1.5 and 3% fish oil in the diet of laying hens in order to benefit from the positive effects of fish oil on egg-laying performance and blood lipid parameters. However, based on the present results, if 3% fish oil is used, the use of L-carnitine can be beneficial to prevent lipid peroxidation and reduce yolk cholesterol.

کلیدواژه‌ها [English]

  • L-carnitine
  • Fish oil
  • Liver
  • Egg yolk
  • Laying hens
Agarwal A, Sengupta P and Durairajanayagam D, 2018. Role of L-carnitine in female infertility. Reproductive Biology and Endocrinology 16: 1-18.
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE and Dhama K, 2019. Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals 9: 573-586.
Al-Shammari KI, Zamil SJ and Batkowska J, 2024. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails. Poultry Science 103: 103166-78.
Aziz MA, Zahra AEA, Kheder ZA and Fikry HM, 2019. The role of L. methionine, L. carnitine, choline and/or silymarin in hepatoprotection against paracetamol intoxication and oxidative stress in broilers. Slovenian Veterinary Research 56: 717–23
Bahrampour H, Mohammadzadeh S and Amiri M, 2024. Impact of dietary L-carnitine supplementation on blood parameters and duodenal alterations in laying hens at the end of production. Tissue and Cell 91: 585-597.
Baucells MD, Crespo N, Barroeta AC, Lopez-Ferrer S and Grashorn AM, 2000. Incorporation of different polyunsaturated fatty acids into eggs. Poultry Science 79: 51-59.
Bozkurt M, Çabuk ME and Alçiçek A, 2008. Effect of dietary fat type on broiler breeder performance and hatching egg characteristics. Journal of Applied Poultry Research 17: 47-53.
Çetin E and Güçlü BK, 2020. Effect of dietary l‐carnitine supplementation and energy level on oxidant/antioxidant balance in laying hens subjected to high stocking density. Journal of Animal Physiology and Animal Nutrition 104: 136-143.
Chatzifotis S, Takeuchi T and Seikai, T. (1995). The effcet of dietary L-carnitine on growth performance and lipid composition in red sea bream fingerlings. Fisheries Science 61: 1004-1008.
Chiang J Y and Ferrell JM, 2020. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Research 4: 47-63.
Dahash BA and Sankararaman S, 2023. Carnitine deficiency. In StatPearls [Internet]. StatPearls Publishing.
Dong XF, Liu S and Tong JM, 2018. Comparative effect of dietary soybean oil, fish oil, and coconut oil on performance, egg quality and some blood parameters in laying hens. Poultry Science 97: 2460-2472.
Elkomy A, Abdelhiee EY, Fadl SE, Emam MA, Gad FAM, Sallam A and Aboubakr M, 2020. L-carnitine mitigates oxidative stress and disorganization of cytoskeleton intermediate filaments in cisplatin-induced hepato-renal toxicity in rats. Frontiers in Pharmacology 11: 574-591.
Eskandani M, Navidshad B, Eskandani M, Vandghanooni S, Aghjehgheshlagh FM, Nobakht and Shahbazfar AA, 2022. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens. Poultry Science 101: 102162.
Gao Z, Zhang J, Li F, Zheng J and Xu G, 2021. Effect of oils in feed on the production performance and egg quality of laying hens. Animals 11: 64-82.
Hu Y, Feng Y, Ding Z, Lv L, Sui Y, Sun Q and Zhao R, 2020. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poultry Science 99: 3111-3120.
Kalaiselvi T and Panneerselvam C, 1998. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. The Journal of Nutritional Biochemistry 9: 575-581.
Kartal M, Kurucu S, Aslan Erdem S, Özbay Ö, Ceyhan T, Sayar E and Cevheroǧlu Ş, 2003. Comparison of ω-3 fatty acids by GC-MS in frequently consumed fish and fish oil preparations on the Turkish market. Fabad Journal of Pharmaceutical Sciences 28: 201-205.
Kazemi-Fard M, Yousefi S, Dirandeh E and Rezaei M, 2015. Effect of different levels of L-carnitine on the productive performance, egg quality, blood parameters and egg yolk cholesterol in laying hens. Poultry Science Journal 3: 105-111.
Kralik G, Kralik Z, Grčević M, Galović O, Hanžek D and Biazik E, 2021. Fatty acid profile of eggs produced by laying hens fed diets containing different shares of fish oil. Poultry Science 100: 101379.
Lindblom SC, Gabler NK, Bobeck EA and Kerr BJ, 2019. Oil source and peroxidation status interactively affect growth performance and oxidative status in broilers from 4 to 25 d of age. Poultry Science 98: 1749-1761.
Liu Y, Yang Y, Yao R, Hu Y, Liu P, Lian S and Li S, 2021. Dietary supplementary glutamine and L-carnitine enhanced the anti-cold stress of Arbor Acres broilers. Archives Animal Breeding 64: 231-243.
Long SF, Kang S, Wang Q, Xu YT, Pan L, Hu JX and Piao XS, 2018. Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profile of broilers. Poultry Science 97: 1881-1890.
Long S, Liu S, Wu D, Mahfuz S and Piao X, 2020. Effects of dietary fatty acids from different sources on growth performance, meat quality, muscle fatty acid deposition, and antioxidant capacity in broilers. Animals 10: 508-521.
Madsen KL, Preisler N, Rasmussen J, Hedermann, G, Olesen JH, Lund AM and Vissing J, 2018. L-Carnitine improves skeletal muscle fat oxidation in primary carnitine deficiency. The Journal of Clinical Endocrinology & Metabolism 103: 4580-4588.
Mansouri E, Asghari S, Nikooei P, Yaseri M, Vasheghani-Farahani A and Hosseinzadeh-Attar MJ, 2024. Effects of virgin coconut oil consumption on serum brain-derived neurotrophic factor levels and oxidative stress biomarkers in adults with metabolic syndrome: a randomized clinical trial. Nutritional Neuroscience 27: 487-498.
Marahatha R, Basnet S, Bhattarai BR, Budhathoki P, Aryal B, Adhikari B and Parajuli N, 2021. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis. BMC Complementary Medicine and Therapies 21: 1-11.
Mariod AA, Mukhtar ME, Salih ME and Herwan T, 2015. Effect of addition of fish oil on the performance parameters of laying hens and the fatty acid composition of their egg yolk. American Journal of Food Science and Health 1: 38-42.
McCann MR, George MV, Rosania GR and Stringer KA, 2021. L-carnitine and acylcarnitines: mitochondrial biomarkers for precision medicine. Metabolites 11: 51-67.
Mirzaei M, Bouyeh M, Zahedi A, Seidavi A, Khan RU, Tufarelli V and Swelum A, 2022. Influence of dietary L‐carnitine and lysine–methionine levels on reproductive performance and blood metabolic constituents of breeder ducks. Reproduction in Domestic Animals 57(3), 253-261.
Modanloo M and Shokrzadeh M, 2019. Analyzing mitochondrial dysfunction, oxidative stress, and apoptosis: potential role of L-carnitine. Iranian Journal of Kidney Diseases 13: 74-86.
Mosayyeb Zadeh A, Mirghelenj SA, Hasanlou P and Shakouri Alishah H, 2023. Effects of pennyroyal (Mentha pulegium L.) supplementation on production performance, egg quality traits, and biochemical parameters of blood and egg in laying hens at later stages of the production period. Veterinary Medicine and Science, 9(1), 242-251.
Mosayyeb Zadeh AM, Mirghelenj SA, Daneshyar M, Eslami M, Torshizi MAK, Zhandi M and Nabiloo M, 2025. Dietary supplementation with 15% tomato pomace (Solanum lycopersicum L.) improves sperm production and antioxidant status in aged male broiler breeders. Poultry Science, 104(1), 104553.
Murali P, George SK and Dominic G, 2020. Effect of dietary supplementation of L-carnitine on serum lipid profile and antioxidant status in broiler chicken fed with animal fat-rich diet. Applied Biological Research 22: 118-122.
Pignatelli P, Lenti L, Sanguigni V, Frati G, Simeoni I, Gazzaniga PP and Violi F, 2003. Carnitine inhibits arachidonic acid turnover, platelet function, and oxidative stress. American Journal of Physiology-Heart and Circulatory Physiology 284: 41-48.
Ringseis R, Keller J and Eder K, 2018. Basic mechanisms of the regulation of L‐carnitine status in monogastrics and efficacy of L‐carnitine as a feed additive in pigs and poultry. Journal of Animal Physiology and Animal Nutrition 102: 1686-1719.
Roseiro LC and Santos C, 2019. Carnitines (including l-carnitine, acetyl-carnitine, and proprionyl-carnitine). In Nonvitamin and nonmineral nutritional supplements 45-52. Academic Press.
Rouhanipour H, Sharifi SD, Irajian GH and Jalal MP, 2022. The effect of adding L-carnitine to omega-3 fatty acid diets on productive performance, oxidative stability, cholesterol content, and yolk fatty acid profiles in laying hens. Poultry Science 101: 102106.
Rustan AC, Nossen JO, Christiansen EN and Drevon CA, 1988. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A: 1, 2-diacylglycerol acyltransferase. Journal of Lipid Research 29: 1417-1426.
Schweitzer GG, Chen Z, Gan C, McCommis KS, Soufi N, Chrast R and Finck BN, 2015. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. Journal of Lipid Research 56: 848-858.
Shahryari M, Tabeidian SA, Shahraki AD, Tabatabaei SN, Toghyani M, Forouzmand M and Habibian M, 2021. Using soybean acid oil or its calcium salt as the energy source for broiler chickens: Effects on growth performance, carcass traits, intestinal morphology, nutrient digestibility, and immune responses. Animal Feed Science and Technology 276: 114919-11435.
Stevanović ZD, Bošnjak-Neumüller J, Pajić-Lijaković I, Raj J and Vasiljević M, 2018. Essential oils as feed additives-Future perspectives. Molecules 23: 1717-1732.
Surai PF, 2020. Antioxidants in poultry nutrition and reproduction: An update. Antioxidants 9: 105-124.
Suresh D and Srinivasan K, 2007. Studies on the in vitro absorption of spice principles–curcumin, capsaicin and piperine in rat intestines. Food and Chemical Toxicology 45: 1437-1442.
Viveros A, Ortiz LT, Rodríguez ML, Rebolé A, Alzueta C, Arija I, Brenes A, 2009. Interaction of dietary high-oleic-acid sunflower hulls and different fat sources in broiler chickens. Poultry Science 88: 141-151.
Wang G, Huang W, Xia Y, Xiong Z and Ai L, 2019. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food & Function 10: 1684-1695.
Wiseman J, Powles J and Salvador F, 1998. Comparison between pigs and poultry in the prediction of the dietary energy value of fats. Animal Feed Science and Technology 71: 1-9.
Zidan A, Hedya SE, Elfeky D and Abdin AA, 2018. The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomedicine & Pharmacotherapy 103: 1302-1311.