اثرات سطوح مختلف آرژنین در جیره‌‌های بر پایه کنجاله کانولای عمل‌آوری شده و یا بدون عمل‌آوری با مس بر عملکرد، وزن اندام‌ها و برخی از فراسنجه‌های خونی جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده‌ی کشاورزی، دانشگاه ارومیه

2 گروه علوم دامی، دانشکده‌ی کشاورزی، دانشگاه تبریز

چکیده

زمینه مطالعاتی: مس و آرژنین دارای وظایف فراوانی می­باشند که می­توانند برای جوجه­های گوشتی مفید باشند. هدف: این آزمایش به منظور مطالعه اثر عمل­آوری کنجاله کانولا با سطوح مختلف یون مس و مکمل آرژنین بر عملکرد، وزن اندام‌های بدن و برخی متابولیت­های خونی جوجه­های گوشتی انجام شد. روش کار: آزمایش به شکل آزمون فاکتوریل 3×3  در قالب طرح کاملاً تصادفی با استفاده از سه سطح مس (صفر، 125 و 250 میلی‌گرم در کیلوگرم) و سه سطح آرژنین (صفر، 1/0 و 2/0 درصد) با تعداد 405 قطعه جوجه­ی گوشتی نر (سویه راس 308) در 9 تیمار، 5 تکرار و در هر تکرار 9 جوجه در یک دوره­ی 3 هفته­ای (42-22 روزگی) صورت گرفت. نتایج: افزایش وزن بدن و ضریب تبدیل خوراک با عمل­آوری کنجاله کانولا با سطح 250 میلی­گرم مس به طور معنی­داری بهبود یافت (05/0>P). عمل­آوری کنجاله کانولا با مس (01/0>P)  و افزودن سطح 2/0 درصد آرژنین (05/0>P) به جیره به طور معنی­داری وزن سینه را افزایش داد. مکمل­سازی 2/0 درصد آرژنین باعث کاهش چربی حفره شکمی و وزن شش­ها و بالعکس افزایش وزن دوازدهه (05/0>P) و ژژنوم (01/0>P) گردید. پایین­ترین وزن سکوم­ در جوجه­های تغذیه شده با جیره­های بر پایه کنجاله کانولا عمل­آوری شده با سطح 250 میلی­گرم در کیلو­گرم مس مشاهده شد (05/0>P). غلظت پلاسمایی اسید اوریک در پرندگان تغذیه شده با جیره­های مکمل شده با 2/0درصدآرژنین نسبت به دو سطح دیگر پایین­تر بود (01/0>P). نتیجه­گیری نهایی: به طور کلی نتایج این آزمایش نشان داد که عمل­آوری کنجاله کانولا با مس می­تواند باعث کاهش اثرات مضر گلوکوزینولات­ها بر عملکرد جوجه­های گوشتی گردد و همچنین افزودن 2/0 درصد آرژنین می­تواند موجب تغییر متابولیسم انرژی به سمت ذخیره پروتئین شود.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of supplementing different levels of arginine to diets based on canola meal untreated or treated with copper on performance, organ weights and blood parameters of broilers

نویسندگان [English]

  • S Azimi 1
  • P Farhumand 1
  • S Peivastghan 1
  • P Baghban 2
Andrew J, Maxwell MD, Kristen A and Bruinsma MS, 2001. Uric Acid Is Closely Linked to Vascular Nitric Oxide Activity. Journal of the American College of Cardiology 38: 1850-1858.
Aydin A, Pekel AY, Issa G, Demirel G and Patterson PH, 2010. Effect of dietary copper, citric acid and microbial phytase on digesta pH and ileal and carcass microbiota of broiler chickens fed a low available phosphorus diet. Journal of Applied Poultry Research 19:422-431.
Balch MD, James F, Balch CNC and Phyllis A, 1997. Prescription for nutritional healing 2nd Edn. Avery Publishing group, New York pp: 35-36.
Ball RO, Urschel KL and Pencharz PB, 2007. Nutritional consequences of interspecies differences in arginine and lysine metabolism. Journal of Nutrition 137:1626–1641.
Barbul A, 1986. Arginine: Biochemistry, physiology, and therapeutic implications. Journal of Parenteral and Enteral Nutrition10:227–238.
Bauchart-Thevret C, Cui L, Wu G and Burrin DG, 2010. Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. American Journal of Physiology. Endocrinology and Metabolism 299: 899-909.
Caspary WF, 1992. Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition 55: 299-308.
Chamruspollert G, Pesti GM and Bakalli RI, 2002. Dietary interrelationships among arginine, methionine, and lysine in young broiler chicks. British Journal of Nutrition 88: 655-660.
Choct M, Naylor A, Hutton O and Nolan J, 2000. Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No 98/123.
Clandinin DR and Robblee AR, 1983. Canola meal can be good source of high quality protein for poultry. Feedstuffs 55: 36-37.
Clifford A and Smith DV, 1987. Rapid method for determining total glucosinolates in rapeseed by measurement of enzymatically released glucose. Journal of the Science of Food and Agriculture 38: 141–150.
Corzo A, Moran ETJ and Hoehler D, 2003. Arginine need of heavy broiler males: applying the ideal protein concept. Poultry Science 82: 402–407.
Cote CG, Yu FS, Zulueta JJ, Vosatka RJ and Hassoun PM, 1996. Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide. American Journal of Physiology 271: 869–874.
Cui HX, Zheng MQ, Liu RR, Zhao GP, Chen JL and Wen J, 2012. Liver dominant expression of fatty acid synthase (FAS) gene in two chicken breeds during intramuscular-fat developmentMolecular Biology Reports 39:3479–3484.
Dann SG and Thomas G, 2006. The amino acid sensitive TOR pathway from yeast to mammals. The Federation of European Biochemical Societies Letters580:2821–2829.
Eaton S, 2002. Control of mitochondrial beta-oxidation flux.  Progress in Lipid Research 41: 197–239.
Fernandes JIM, Murakami AE, Martins E, Sakamoto MI and Garcia ERM, 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science 88: 1399-1406.
Fouad AM, El-Senousey HK, Yang XJ and Yao JH, 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal Science 7:1239–1245.
Fouad AM and El-Senousey HK, 2012. Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review. Asian Australas. Journal of Animal Scienc 27: 1057-1068.
Hara K, Yonezaw K, Weng QP, Kozlowski MT, Belham C and Avruch J, 1998.  Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. Journal of Biolology Chemestiry 273:14484–14494.
Hawbaker JA, Speer VC, Hays VW and Catron DV, 1961. Effect of copper sulfate and other chemotherapeutics in growing swine rations. Journal of Animal Science 20: 163-167.
Houston M,­ ­Chumley P, Radi R, Rubbo H and  Freeman BA, 1998. Xanthine oxidase reaction with nitric oxide and peroxynitrite. Archive for Biochemistry and Biophysics 355:1–8.
Izadinia M, Nobakht M, Khajali F, Faraji M, Zamani F, Qujeq D and Karimi I, 2010. Pulmonary hypertension and ascites as affected by dietary protein source in broiler chickens reared in cool temperature at high altitudes. Animal Feed Science and Technology 155: 194-200.
Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK and Wu G, 2009. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. Journal of Nutrition 139: 230–237.
Kermanshahi H and Abbasi Pour AR, 2006. Replacement value of soybean meal with rapseed meal supplemented with or without a dietary NSP-degrading enzyme on performance, carcass traits and thyroid hormones of broiler chickens. International Journal of Poultry Science 5:925-930.
Khajali F and Wideman RF, 2010. Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poultry Science Journal 66: 751-766.
Khajali F, Heydary Moghaddam M and Hassanpour H, 2013. An L-Arginine supplement improves broiler hypertensive response and gut function in broiler chickens reared at high altitude. International Journal of Biometeorology 58:1175-1179.
Khajali F and Slominski BA, 2012. Factors that affect the nutritive value of canola meal for poultry. Poultry Science 91:2564–2575.
Khajali F, Tahmasebi M, Hassanpour H, Akbari MR, Qujeq D and Wideman RF, 2011. Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Science 90: 2287-2294.
Kidd MT, Peebles ED, Whitmarsh SK, Yeatman JB and Wideman RF, 2001. Growth and immunity of broiler chicks as affected by dietary arginine. Poultry Science 80: 1535-1542.
Kim DH and Sabatini DM, 2004. Raptor and mTOR: Subunits of a nutrient-sensitive complex. Current Topics in Microbiology and Immunology 279:259–270.
Kim GB, Seo YM, Shin KS, Rhee AR, Han J and Paik IK, 2011. Effects of supplemental copper-methionine chelate and copper-soy-proteinate on performance, blood parameters, liver mineral content and intestinal microflora of broiler chickens. Journal of Applied Poultry Research 20:21-32.
Le Roith D, Bondy C, Yakar S, Liu JL and Butler A, 2001. The somatomedin hypothesis: 2001. Endocrine Reviews22:53–74.
Lee C, Liu X and Zweier JL, 2000. Regulation of xanthine oxidase by nitric oxide and peroxynitrite. Journal of Biological Chemistry 275:9369–76.
Lu L, Wang RL, Zhang ZJ, Steward FA, Luo X and Liu B, 2010. Effect of dietary supplementation with copper sulphate or tribasic copper chloride on growth performance, liver copper concentrations of broiler in floor pens, and stabilities of vitamin E and phytase in feeds. Biological Trace Elements Research 138:181-189.
Marangos A and Hill R, 1974. The hydrolysis and absorption of thioglycosides of rapeseed meal. Proceedings of the Nutrition Society 33:90A (abstract).
Mawson R, Heany RK, Piskula M and Kozlowska H, 1993. Rapeseed meal glucosinolates and their antinutritional effects1. Rapeseed production and chemistry of glucosinolates. Die Nahrung  37: 131–140.
McNeill L, Bernard K and MacLeod MG, 2004. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal, with observations on sensory evaluation of the resulting poultry meat. British Poultry Science 45:519–523.
Murakami­­ ­AE, Fernandes JIM, Hernandes L and Santos, TC, 2012. Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry. Pesquisa Veterinária Brasileira 32: 259-266.
NRC, 1994.  Nutrient Requirements for Poultry, ninth rev. ed. National Research Council, NY.
Pang Y, Patterson JA and Applegate TJ, 2009. The influence of copper concentration and source on ileal microbiota. Poultry Science 88:586-592.
Payvastegan S, Farhoomand P and Delfani N, 2013. Growth Performance, Organ Weights and, Blood Parameters of Broilers Fed Diets Containing Graded Levels of Dietary Canola Meal and Supplemental Copper. Journal of Poultry Science 50: 354-363.
Pesti GM, Bakalli RI, 1996. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poultry Science 75: 1086-1091.
Pluske JR, Hampson DJ and Williams IH, 1997. Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livestock Production Science51: 215- 236.
Popovic PJ, Zeh HZ and Ochoa JB, 2007. Arginine and immunity. Journal of Nutrition 137:1681–1686.
Rhoads JM and Wu GY, 2009. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122.
Rowan TG, Lawrence TLJ and Kershaw SJ, 1991. Effects of dietar copper and probiotic on glucosinolate concentrations in ileal digesta and in faeces of growing pigs given diets based on rapeseed meals. Animal Feed Science and Technology 35: 247-258.
Rubin LL, Canal CW, Ribeiro ALM, Kessler A, Silva I, Trevizan L, Viola T, Raber M, Gonçalves TA and Krás R, 2007. Effects of Methionine and Arginine Dietary Levels on the Immunity of Broiler Chickens Submitted to Immunological Stimuli. Brazilian Journal of Poultry Science 9: 241-247.
Saki AA, Haghighat M and Khajali F, 2013. Supplemental arginine administered in ovo or in the feed reduces the susceptibility of broilers to pulmonary hypertension syndrome. British Poultry Science 54:575-580.
Schöne F, Jahreis G and Richter G, 1993. Evaluation of rapeseed meal in broiler chickes: effect of iodine supply and glucosinolate degradation by myrosinage and copper. Journal of the Science of Food and Agriculture 61: 245-252.
Schone F, Ludke H, Hennig A and Jahreis G, 1988. Copper and iodine in pig diets with high glucosinolate rapeseed meal. 2. Influence of different iodine supplements to diets with untreated rapeseed meal or rapeseed meal treated with copper ions on performance and thyroid hormone status of growing pigs. Animal Feed Science and Technology 22: 45-59.
Schone F, Winnefeld K, Kirchner E, Grun M, Ludke H and Hennig A, 1990. Copper and iodine in pig diets with high glucosinolate rapeseed meal. 3. Treatment of rapeseed meal with copper, and the effect of iodine supplementation on trace element statusand some related blood (serum) parameters. Animal Feed Science and Technology 30: 143-154.
Scott GS and Bolton C, 2000. L-Arginine modifies free radical production and the development of experimental allergic encephalomyelitis. Inflammation Research 49:720–726.
Sharifi MR, Khajali F, Hassanpour H, Pour-Reza J and Pirany N, 2015. Supplemental L-arginine Modulates Developmental Pulmonary Hypertension in Broiler Chickens Fed Reduced-Protein Diets and Reared at High Altitude. Poultry Science Journal 3: 47-58.
Sklan D and Noy Y, 2004. Catabolism and deposition of amino acids in growing chicks: Effect of dietary supply. Poultry Science 83:952–961.
Tan X, Hu SH and Wang XL, 2007. Possible role of nitric oxide in the pathogenesis of pulmonary hypertension in broilers: a synopsis. Avian Pathology 36: 261-267.
Tesseraud S, Maaa N, Peresson R and Chagneau AM, 1996. Relative responses of protein turnover in three different skeletal muscles to dietary lysine deficiency in chicks. British Poultry Science 37:641–650.
Tripathi MK and Mishra AS, 2007. Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology 132: 1-27.
Tripathi MK, Mishra AS, Misra AK, Mondal D and Karim SA, 2001. Effect of groundnut with high glucosinolate mustard (Brassica juncea) meal on nutrient utilization, growth, vital organ weight and blood composition in lambs. Small Ruminant Research 39: 261-267.
Tykarski A, 1991. Evaluation of renal handling of uric acid in essential hypertension: hyperuricemia related to decreased urate secretion. Nephron 59:364–8.
Wu LY, Fang YJ and Guo XY, 2011. Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poultry Science 52: 221–226.
Wu X, Ruan Z, Gao Y, Yin Y, Zhou X, Wang L, Geng M, Hou Y and Wu G, 2010. Dietary supplementation with L-arginine or N-carbamyl glutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39: 831-839.
Xia MS, Hu HC and Xu RZ, 2004. Effects of copper bearing montmorillonite on growth performance, digestive enzyme activities and intestinal microflora and morphology of male broiler. Poultry Science 83: 1868-1875.
Yao K, Guan S, Li T, Huang R, Wu G, Ruan Z and Yin Y, 2011. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. British Journal of Nutrition 105: 703-709.
Yuan C, Ding Y, Qiang He, Azzam MMM, Lu JJ and Zou X T, 2015. L-arginine upregulates the gene expression of target of rapamycin signaling pathway and stimulates protein synthesis in chicken intestinal epithelial cells. Poultry Science 94:1043–1051.
Zeb A, 1998. Possibilities and limitations of feeding rapeseed meal to broiler chicks. Ph.D. degree thesis. Georg-August University Goettingen 125pp.
Zhou W, Kornegay ET, Lindemann MD, Swinkels JWGM, Welton MK and Wong E A, 1994. Stimulation of growth by intravenous injection of copper in weanling pigs. Journal of Animal Science 72: 2395–2403.