Abasi-mashee B, Fayazi J, Roshanfekr H, Nasiri-Beigi MT and Mirzade K, 2009. Molecular marker assisted study of kappa casein gene in buffalo population in khouzestan province. National Symposium of Buffalo in Iran. 2:16-21 (In Persian).
Akey J, 2009. Constructing genomic maps of positive selection in humans: Where do we go from here? Genome research 19: 711-722.
Arif I, Khan Haseeb A, Bahkali Ali H, Al Homaidan Ali A, Al Farhan Ahmad H, Al Sadoon M and Shobrak M, 2011. DNA marker technology for wildlife conservation. Saudi journal of biological sciences 18: 219-225.
Azizi Z, Moradi Shahrbabak H, Moradi Shahrbabak M, Rafat A and Shodja J, 2016a. Genetic classification of Azari and North ecotype Buffalo population using SVM method. Iranian Journal of Animal Science. 2:279-291 (In Persian).
Azizi Z, Rafat A, Shoja J, Moradi Shahrbabak H and Moradi Shahrbabak M, 2016b. Study of population structure and stratification two ecotypes buffalo with dense single nucleotide polymorphism markers using Admixture, MDS, PCA and GC methods. Journal of Agricultural Biotechnology. 8(2):2-8 (In Persian).
Bromad-jezi M, 2005. Buffalo Breeding .The Institute of Applied Agriculture. (In Persian).
Chen WC and Dorman K, 2010. phyclust: phylogenetic clustering (Phyloclustering) R package, http://cran.r-project.org/package=phyclust.
FAO. 2015. The second report on the state of the world's animal genetic resources for food and agriculture. Rome.
Goddard Michael E and Hayes Ben J, 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10: 381-391.
Grünwald Niklaus J and Goss Erica M, 2011. Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annual review of phytopathology 49: 249-267.
Iamartino D, Nicolazzi EL, Van Tassell CP, Reecy JM, Fritz-Waters ER, Koltes JE, et al. 2017. Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS ONE 12(10): e0185220.
Jombart T, 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405.
Jombart T, Devillard S and Balloux F, 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genetics 1: 94.
Karimi K, Esmailizadeh KA, and Asadi Fuzi M, 2015. Analysis of genetic structure of Iranian indigenous cattle populations using dense single nucleotide polymorphism markers. Animal Production Research 3: 93-104.
Karimi K, Esmailizadeh KA, and Asadi Fuzi M, 2017. Linkage disequilibrium levels in Fars province native cattle population using high-density SNP data. Animal Science Researches 27(1): 17-27.
Lee C, Abdool A and Huang CH, 2009. PCA-based population structure inference with generic clustering algorithms. BMC bioinformatics 10: 1471-2105.
Liu N and Zhao H, 2006. A non-parametric approach to population structure inference using multilocus genotypes. Human genomics 6: 353-364.
Medugorac I, Medugorac A, Russ I, Veit‐Kensch C E, Taberlet P, Luntz B, Mix Henry M and Foerster M, 2009. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Molecular ecology 16: 3394-3410.
Mokhber M, Moradi-Shahrbabak M, Sadegh M, Moradi-Shahrbabak H and Williams J, 2015. Genome-wide survey of signature of positive selection in Khuzestani and Mazandrani buffalo breeds. Iranian Journal of Animal Science. 46:119-31 (In Persian).
Mokhber M, 2015. A genome-wide scan for Selective signatures in Iranian buffalo breeds. PhD thesis, College of Agriculture and Natural Resources, Tehran University.
Paradis E, Claude J and Strimmer K, 2004. APE: analyses of phylogenetics and eEvolution in R language. Bioinformatics 20: 289-290.
Pometti CL, Bessega CF, Saidman BO and Vilardi JC, 2014. Analysis of genetic population structure in Acacia caven (Leguminosae, Mimosoideae), comparing one exploratory and two Bayesian-model-based methods. Genetics and molecular biology 37: 64-72.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ and Sham PC, 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81: 945-959.
Rahmaninia J, Miraei-Ashtiani SR and Moradi Shahrbabak H, 2015. Unsupervised clustering analysis of population and subpopulation structure using dense SNP markers. Iranian Journal of Animal Science 46(3):277-287 (In Persian).
Rozgar S, Nasiri-Beigi MT, Roshanfekr H, Fayazi J, Mirzade K and Sadr-sadat A, 2009. The study of PIT1 Gene Polymorphism in buffalo population in khouzestan province using PCR-RFLP Method. National Symposium of Buffalo in Iran. 2:78-81 (In Persian).
Shojaee Y, Fayazi J, Roshanfekr H and Mirzade K, 2009. Investigation of prolactin polymorphism in buffalo population of Khuzestan province by PCR-RFLP. National Symposium of Buffalo in Iran. 2:82-85 (In Persian).
Simianer H, Ma Y and Qanbari S, 2014. Statistical problems in livestock population genomics. In: Proceedings, 10th World Congress of genetics applied to livestock production. Vancouver; https://asas.org/docs/default-source/wcgalp-proceedings-oral/202_paper_10373_manuscript_1346_0.pdf?sfvrsn=2.
Thomas DC and Witte JS, 2002. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiology Biomarkers & Prevention 11: 505-512.
Utsunomiya YT, Perez OBrien AM, Sonstegard TS, Van Tassell CP and do Carmo AS, 2013. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome wide scan methods. PLoS ONE 8(5), e64280.
doi:10.1371/journal.pone.0064280.
Voight BF, Kudaravalli S, Wen X and Pritchard JK, 2006. A map of recent positive selection in the human genome. PLoS Biology 4(3), e72.
Weir BS and Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.
Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TPL, Low WY, Biagini T, Bomba L, et al., 2017. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50). GigaScience 6(10): 1-6.