بررسی میزان آلودگی آفلاتوکسین در خوراک مصرفی و شیر تولیدی و شناسایی مولکولی سویه قارچی آن در برخی از گاوداری‌های استان آذربایجان شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی دانشگاه تبریز

چکیده

زمینه مطالعاتی: آفلاتوکسین­ها گروهی از مایکوتوکسین­های تحت عنوان متابولیت­های ثانویه سمی هستند که باعث آلودگی خوراک می­شوند. هدف: پژوهش حاضر به منظور شناسایی میزان آلودگی آفلاتوکسین M1 شیر، آفلاتوکسین B1 خوراک و متعاقبا جداسازی و شناسایی مولکولی گونه قارچی آسپرژیلوس فلاووس طراحی گردید. روش کار: بدین‌منظور از 10 گاوداری سطح استان آذربایجان شرقی به طور تصادفی نمونه­های خوراک و شیر در ماه­های اسفند و فرودین جمع آوری گردید و متعاقباً تعیین میزان آفلاتوکسین­ها، به روش الایزا انجام گرفت. همچنین جداسازی و شناسایی قارچ آسپرژیلوس فلاووس نمونه­هایی با حداکثر آلودگی (2 نمونه) و سویه­های خالص آسپرژیلوس فلاووس با استفاده از محیط کشت پوتیتو دکستروز آگار، پرایمر اختصاصی و واکنش PCR انجام پذیرفت. یافته­های به دست آمده از آنالیز آفلاتوکسین M1 و B1 توسط آزمون آماری T و با نرم افزار SAS مورد تجزیه و تحلیل قرار گرفت و اعداد به دست آمده با اعداد استاندارد جهانی و ملی مقایسه شد. نتایج: نتایج به دست آمده نشان داد که تمامی نمونه­های شیر و خوراک آلوده به آفلاتوکسین بودند ولی میزان آلودگی نمونه­های شیر کمتر از مقادیر مجاز استاندارد ایران، آمریکا و اتحادیه اروپا (به ترتیب 1/0، 5/0 و 05/0 میکروگرم در کیلوگرم) بود و از بین 10 نمونه تنها دو نمونه خوراکی میزان آلودگی آفلاتوکسین B1 بالاتر از حد مجاز استانداردهای ایران و اتحادیه اروپا (5 میکروگرم در کیلوگرم) بود. محدوده آلودگی نمونه­های شیر و خوراک به ترتیب در دامنه­های 021/0 الی 05/0 و 1/1 الی 9/6 میکروگرم در کیلوگرم مشاهده شد. از لحاظ آماری نیز آلودگی آفلاتوکسین M1 و B1 سطح منطقه از استانداردهای ملی و بین المللی پایینتر بود. تفاوت معنی­داری بین میانگین وجود داشت و به طور معنی­داری میانگین آلودگی­ها پایین­تر از این استانداردها بود (به ترتیب 0001/0>p و 01/0>p برای شیر و خوراک). بر اساس نتایج به دست آمده در خصوص شناسایی گونه قارچی نیز با توجه به عدم تشکیل باند در محدوه­ bp413، می­توان نتیجه گرفت که گونه غالب و عامل اصلی آلودگی خوراک­های نمونه برداری شده، گونه فلاووس نبوده است. نتیجه گیری نهایی: تفاوت معنی­داری بین میانگین آلودگی آفلاتوکسین M1 و B1 سطح منطقه با استانداردهای ملی و بین المللی وجود داشت و میانگین آلودگی­ها پایین­تر از این استانداردهای مزبور بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the rate of aflatoxin contamination in livestock feed and milk and molecular indentification of their fungal strains in some dairy farms of East Azerbaijan provice

نویسندگان [English]

  • M Montazer
  • H Paya
  • A Taghizadeh
  • A Hoseinkhani
چکیده [English]

Introduction: Aflatoxins are a large group of mycotoxins that are produced through Polyketide pathway by specific species of Aspergillus flavus, Aspergillus parasiticus, and  Aspergillus nomius. These pesticides are known to be the most dangerous mycotoxins affecting human and livestock health (Pleadin et al. 2014). Several hundred mycotoxins have been identified, and more than 25% of the world annual grain production is contaminated with mycotoxin (Smith et al. 2016). Among the 400 known mycotoxins, Aflatoxin B1, B2, G1, and G2 are the most important food and feed mycotoxins (Costanzo et al. 2015). Aflatoxin M1 and M2 are the hydroxyl metabolite of aflatoxin B1 and B2 that can be found in milk or other animal products (Hussein and Brasel. 2001). At the first level, the main manifestations of mycotoxins exposure in animals are reductions in feed intake and weight gain. At the second level, mycotoxins affect the quantity of animal products. The third level of influence is the safety and quality of the products from exposed animals (Wang et al. 2019). The present study was designed to detect contamination of aflatoxin M1 in milkand, aflatoxin B1 in feed and subsequent molecular isolation and identification of Aspergillus flavus species.
Material and methods: In this study, 10 milk samples from milk reservoirs and 10 feed samples from a total mixed ration of livestock from dairy farms of East Azarbaijan province (Tabriz and Marand) were collected. After preparation of samples, the experiment was conducted using competitive ELISA method. The principles were as follows: after adding standard solutions or samples to the wells, aflatoxin M1 was bonded from specimens or standards to specific antibody binding sites. After 30 minutes of  incubation step, unbound reagents were removed during a single wash step. Horseradish peroxidase (HRP) aflatoxin M1 was added to the wells and after one 15 minutes of incubation, the unlinked conjugate was removed during the washing step. Then, some aflatoxin M1-HRP was coherent by adding a substrate/chromogen (H2O2/TMB) solution. In the presence of colorless chromogen, mixed conjugated aflatoxin and M1-HRP agent was converted to colored product. The addition of sulfuric acid caused the suspension of the substrate reaction and finally, the light intensity was measured by a photometric method at 450 nm. Optical density had an inverse relationship with the concentration of aflatoxin in the sample. To isolate the fungus, first 2 g of the standardized feed  were weighed and milled  in  a falcon containing 18 ml of physiological serum and then, mixed well with a vortex for five minutes. A portion of the diluted feed was removed and cultured on plots containing a Potato Dextrose Agar medium at several locations. Plates were incubated for 7 days at 25 ℃. DNA was extracted from Potato Dextrose Broth (PDB) medium. The resulting mycelium mass was frozen and converted to a uniform powder by liquid nitrogen. DNA extraction was carried out by placing the samples in a buffer and purification with organic solvents such as chloroform/isoamyl alcohol and finally, curing with cold isopropanol. The resulting DNA was stored at -20 ° C. In order to evaluate the actuary of identification for Aspergillus flavus, the primer sequence of AFLA-F and AFLA-R gene was aligned using the BLAST software (GenBank) to find similarity rate within resisted reference sequences. Each PCR reaction consists of: 6 μl of PCR Master Mix, 2 μl extracted DNA, 0.2 μl of each recipe primer, 1.6 μl of distilled water. Then, 10 μl of the final volume of reaction was placed on thermosecler device. A PCR program for amplification of the targeted PCR fragment was fixed based on following temperature: Initial denaturant at 95℃ for 10 min, {denaturant at 95℃ for 1 min, annealing at 66℃ for 2 min, extension at 72℃ for 2 min (total 34 cycle)} and the final amplification at 72℃ for 5 minutes (Zachová et al. 2003). Isolated strains of Aspergillus strains were verified using the PCR method; its reaction products were detected in 1% agarose gel by electrophoresis.
Results and discussion: The results showed that all milk and feed samples were contaminated with aflatoxin, but the contamination rate of milk samples was lower than the standard values of Iran, America, and the European Union (0.1, 0.5 and 0.05 μg / Kg). Among the 10 collected samples, only two edible samples with aflatoxin B1 contamination were higher than the Iranian and European standards (5 μg / kg). The contamination level of milk and feed samples were observed in the range of 0.021-0.05 and 1.1-6.9 μg / kg, respectively. Statistically, there was a significant difference between the mean of contamination of aflatoxin M1  in milk and B1 in feed in the region with national and international standards and the mean of M1 and B1 contamination was lower than these standards. The level of aflatoxin M1 in milk was detected by HPLC method, indicating that the infection rate of 10 samples was 0.02-0.31 μg / l (Besufekad et al. 2018). In another study, 178 wheat samples were collected in China and reported 18.8% of the samples contaminated with aflatoxin B1 (Liu et al. 2016). The results of the fungal species also showed that the analyzed samples did not show any bands in the 413bp range. As a result, it can be said that the dominant species and the main cause of contamination were not Flavus species. Wang et al. (2016) reported that aflatoxins are mainly produced by the genus Aspergillus, and are commonly found in food and feed in humid and warm environments. Research results in India show that among the 15 collected samples, only 9 samples (60%) were infected with Aspergillus. Seven samples were detected as  Aspergillus flavus and two samples as  Aspergillus niger (Khare et al. 2018).
Conclusion: Milk composition, body mass gain, immunity, and reproductive performance are affected in dairy ruminants by feeds contaminated with aflatoxins. It is expected that by controlling animal feed agaisnt aflatoxin and reducing its levels in feed by improving production and storage conditions, a suitable method for preventing contamination of milk and its products will be adopted to help improve the health of the community.

Ahmed AD, Al-Khafaji NJ and Ahmed LT, 2017. Isolation and Molecular Identification of Aspergillus spp. Collected from Different Sources of Animals Feed. International Journal of Current Microbiology and Applied Sciences 6: 1792-1797.      
Besufekad Y, Ayalew W and Getachew A, 2018. Analysis to Ascertain the Determination for Aflatoxin Contamination of Milk and Feeds from Gurage Zone, Ethiopia. International Journal of Agricultural Research 13: 1-11.
Blanco JL, Dominguezs L, Gomez-lucia E, Garayzabal JF, Garcia JA and Suarez G, 1988. Presence of aflatoxin M1 in commercial UHT treated milk, Applied Environmental Microbiology 54: 1622-1633.
Campone L, Piccinelli AL, Celano R, Pagano I, Di Sanzo R, Carabetta S, Mariateresa R and Rastrelli L, 2018. Occurrence of aflatoxin M1 in milk samples from Italy analysed by online-SPE UHPLC-MS/MS. Natural Product Research 32: 1803-1808.
Costanzo P, Santini A, Fattore L, Novellino E and Ritieni A, 2015. Toxicity of aflatoxin B1 towards the vitamin D receptor (VDR). Food and Chemical Toxicology 76: 77-79.
Creppy EE, 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters 127: 19-28.
Davari E, Mohsenzadeh M, Mohammadi G and Rezaeian-Doloei R, 2015. Characterization of aflatoxigenic Aspergillus flavus and A. parasiticus strain isolates from animal feedstuffs in northeastern Iran. Iranian Journal of Veterinary Research 16: 150-155.
Ehsani A, Barani A and Nasiri Z, 2016. Occurrence of aflatoxin B1 contamination in dairy cows feed in Iran. Toxin Reviews 35: 54-57.
Gizachew D, Szonyi B, Tegegne A, Hanson J and Grace D, 2016. Aflatoxin contamination of milk and dairy feeds in the Greater Addis Ababa milk shed, Ethiopia. Food Control 59: 773-779.
Gontia-Mishra I, Tripathi N and Tiwari S, 2014. A simple and rapid DNA extraction protocol for filamentous fungi efficient for molecular studies. Indian Journal of Biotechnology 13: 536-539.
Hernández-Hierro JM, García-Villanova RJ and González-Martín I, 2008. Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Analytica Chimica Acta 622: 189-194.
Hussein HS and Brasel JM, 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167: 101-134.
Kaufman P, 2007. Mushroom poising: syndromic diagnosis and treatment. Food Additives and Contaminants. 157: 493-502.
Khare R, Agarwal MK, Bhagayavant SS, Verma P and Nagar DP, 2018. Detection of Aspergillus flavus using PCR method from fungus infested food grains collected from local market. Annals of Plant Sciences 7: 2073-2077.
Khodavaisy S, Maleki A, Hossainzade B, Rezai S, Ahmadi F, Validi A, Rashidi A and Ghahramani A, 2012. Occurrence of fungal contamination in pistachio and peanut samples from retail shops in Sanandaj province, Iran. African Journal of Microbiology Research 6: 6781-6784.
Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A and DeCock K, 2005. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environmental Health Perspectives 113: 1763-1767.
Liu J, Sun L, Zhang J, Guo J, Chen L, Qi D and Zhang N, 2016. Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from central China. Food Additives and Contaminants: Part B 9: 91-97.
Mahmoudi R and Norian R, 2015. Aflatoxin B1 and M1 contamination in cow feeds and milk from Iran. Food and Agricultural Immunology 26: 131-137.
Manafi M, Hedayati M and Arak H, 2018. The effect of concomitant use of ethanolic mixture extractions of Thyme and Oregano on performance and morphology of gastrointestinal tract in broilers fed contaminated feed with Aflatoxin B1. Journal of Animal Science Researches (Agriculture Science) 18: 1-16. (In Persian)
Martin RR, James D and Lévesque CA. (2000). Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology 38: 207-239.
Mohammadi H, Shokrzadeh M, Aliabadi Z and Riahi-Zanjani B, 2016. Occurrence of aflatoxin M1 in commercial pasteurized milk samples in Sari, Mazandaran province, Iran. Mycotoxin Research 32: 85-87.
Pleadin J, Vulić A, Perši N, Škrivanko M, Capek B and Cvetnić Z, 2014. Aflatoxin B1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control 40: 286-291.
Rahimi S and Rahimi S, 2017. Evaluation of the Cattle Ration feed Contamination Amount With the Aspergillus Fungi by PCR-Based Technique and Based on ITS Gene Sequences. Biosciences Biotechnology Research Asia 14: 53-61.
Schena L, Nigro F, Ippolito A and Gallitelli D, 2004. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology 110: 893-908.
Smith MC, Madec S, Coton E and Hymery N, 2016. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8: 94-109.
Taheri N, Semnani S, Roshandel G, Namjoo M, Keshavarzian H, Chogan AG, Kebria FG and Joshaghani H, 2012. Aflatoxin contamination in wheat flour samples from Golestan Province, Northeast of Iran. Iranian Journal of Public Health 41: 42-47.
Velazhahan R, Vijayanandraj S, Vijayasamundeeswari A, Paranidharan V, Samiyappan R, Iwamoto T, Friebe B and Muthukrishnan S, 2010. Detoxification of aflatoxins by seed extracts of the medicinal plant, Trachyspermum ammi (L.) Sprague ex Turrill-structural analysis and biological toxicity of degradation product of aflatoxin G1. Food Control 21: 719-725.
Wang Q, Zhang Y, Zheng N, Guo L, Song X, Zhao SH and Wang J, 2019. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins 11: 77-99.
Xie L, Chen M and Ying Y, 2016. Development of methods for determination of aflatoxins. Critical Reviews in Food Science and Nutrition 56: 2642-2664.
Xiong J, Xiong L, Zhou H, Liu Y and Wu L, 2018. Occurrence of aflatoxin B1 in dairy cow feedstuff and aflatoxin M1 in UHT and pasteurized milk in central China. Food Control, 92: 386-390.
Yahyaraeyat R, Shokri H, Khosravi AR and Torabi S, 2017. Evaluation of the contamination of aflatoxin M1 level in raw milk samples by ELISA method in Yazd province. Journal of Veterinary Research 72.
Zachová I, Vytřasová J, Pejchalová M, Červenka L and Tavčar-Kalcher G, 2003. Detection of aflatoxigenic fungi in feeds using the PCR method. Folia Microbiologica 48: 817-821.
Zhao Y, Wang Q, Huang J, Ma L, Chen Z and Wang F, 2018. Aflatoxin B1 and sterigmatocystin in wheat and wheat products from supermarkets in China. Food Additives and Contaminants: Part B 11: 9-14.