اثرات عدم تقارن در عملکرد جفت تخمدان‌های گاوی بر ویژگی‌های بافت شناسی دسته‌جات مختلف فولیکول‌های پری‌آنترال انجماد یافته به روش شیشه‌سازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

2 دانشکده دامپزشکی، موسسه تحقیقاتی لموفوپا، دانشگاه ایالتی سرآ فورتالزای برزیل

3 گروه علوم دامی، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری. گروه زیست فناوری دامی. آزمایشگاه زیست فناوری رویان

چکیده

زمینه مطالعاتی: تناقض­های بسیاری در رابطه با اثرات مثبت یا منفی جسم زرد و فعالیت نابرابر دو سمت دستگاه تولید مثلی وجود دارد. هدف: هدف از این مطالعه بررسی اثرات جسم زرد و سمت تخمدان (راست در برابر چپ) بر ویژگی­های بافت­شناسی انواع مختلف فولیکول­های پره­آنترال بعد از فرآیند انجماد بافت تخمدان گاوی به روش شیشه­سازی بوده است. روش کار: قطعات تخمدانی از هر یک از جفت تخمدان­ها استحصال شدند. در گروه کنترل تازه نمونه­های بافتی بلافاصله برای آنالیزهای بافتی  تثبیت شدند در حالی که در گروه­های تحت فرآیند انجماد به روش شیشه­سازی [ گروه­های فاقد جسم زرد، واجد جسم زرد، راست و چپ] که سپس 1 یا 5 روز مورد کشت برون­تنی قرار گرفتند، بافت­های تخمدانی قبل و بعد از کشت تثبیت شده و از لحاظ بافت­شناسی مورد بررسی قرار گرفتند. نتایج: نتایج این آزمایش نشان داد که اگرچه عدم حضور جسم زرد در تخمدان منجربه وقوع درصد بالاتری از فولیکول­های نرمال از نوع انتقالی (نمونه­های کشت داده شده در روز 1) و اولیه (نمونه­های گرم­سازی شده) نسبت به نمونه­هایی که از تخمدان­های واجد جسم زرد گرفته شده است، شد اما یک مورد استثناء هم وجود داشت. این نتایج نشان دادند که در نمونه­های بدست آمده از تخمدان­های واجد جسم زرد، درصد بالاتری از فولیکول­های مادری اولیه نرمال (نمونه­های کشت داده شده در روز 1) نسبت به تخمدان­های فاقد جسم زرد مشاهده می­شود (به ترتیب 6/57 % در برابر 3/39 %). اگرچه برای تمامی انواع فولیکول­های پره­آنترال در تمامی مراحل آزمایش (گرم­سازی، روز 1 یا 5 کشت برون­تنی) هیچ تفاوت معنی­داری از لحاظ درصد فولیکول­های نرمال بین دو گروه راست و چپ وجود نداشت (05/0˃P).  نتیجه­گیری نهایی: براساس نتایج بدست آمده از این مطالعه اینگونه میتوان استنتاج کرد که بسیاری از عوامل همچون حضور یا عدم حضور یک جسم زرد، نوع و رده فولیکول­های پره­آنترال، مراحل پس از انجماد (گرم­سازی و روزهای کشت داده شده) و اثر متقابل بین این عوامل می­توانند میزان موفقیت نتایج حاصل از انجماد به روش شیشه­سازی را متأثر سازند.

کلیدواژه‌ها


عنوان مقاله [English]

Impacts of asymmetry in activity of left and right bovine ovaries on histological characteristics of various vitrified preantral follicle classes

نویسندگان [English]

  • MH Shahsavari 1
  • Gh Moghaddam 1
  • H Daghigh Kia 1
  • AP Ribeiro Rodrigues 2
  • M Dashtizad 3
2 Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza, Ceará, Brazil
چکیده [English]

Introduction: The success of ovarian tissue cryopreservation can be recognized by the live birth in different animal species (mice, rabbit, birds, sheep, and human). In spite of all the advances of cryopreservation of ovarian tissue, it is still a challenge and protocols should be optimized to handle the diversity of cell types and components of this tissue (oocyte, granulosa cells, endothelial cells, extra cellular matrix) and the biological variability among species. It was reported that there was a relationship between the development of corpus luteum (CL) and the development of follicles, which may cause asymmetry in the function of the reproductive organs in dairy cows. Previous studies confirmed asymmetry in the function of reproductive system in dairy cows due to differences in ovarian activity and probably because of physiological differences in the tubular parts of reproductive organs which result from the side of the previous gestation. There are many discrepancies about positive or negative effects of corpus luteum and unequal activity of sides of the reproductive system. Therefore, the aim of this study was to investigate the impacts of CL and side of ovaries (Right vs. Left) on histological characteristics of different types of preantral follicles after bovine ovarian tissue vitrification.
 Material and methods: Ovaries (n=10) were collected from five adult cross-bred cows at a local abattoir. Ovaries were categorized on the basis of the presence or absence of a CL and the side of ovaries and divided into five pools: 1/CL+ (with CL) group, 2/CL -(without CL) group, 3/right ovaries group, 4/left ovaries group and 5/C control group (ovaries which were not selected toward the presence or absence of CL or side of ovaries). From each bovine ovarian pair, fragments were recovered and immediately fixed for analysis (fresh control) or submitted to vitrification [CL (˗); CL(+); Right and Left group), either followed by in vitro culture for 1 or 5 days. Samples were fixed in Millonig’s for 2 h, dehydratedin a graded series of ethanol, clarified with xylene,embedded in paraffin wax, and serially sectioned into 7 µmsections. Every fifth section was mounted on a glass slide,stained with Periodic acid–Schiff (PAS), and evaluated usinga light microscope at magnificationof 400×. All procedures for exposure to cryoprotectant agents (CPAs) and vitrification were performed by using the new Ovarian Tissue Cryosystem (OTC). For the in vitro culture, the cortex tissue samples weretransferred to 24-well culture dishes containing 1 mLof the culture medium per well. The culture wasperformed at 38.5 °C in 5 % CO2 in a humidifiedincubator. The ovarian tissue was histologically evaluated before and after culture. The quality of the preantral follicles wasclassified according to the parameters previously described. Briefly, morphologically normal folliclescontained an intact oocyte and granulosa cells, whereasdegenerated follicles contained an oocyte with a pyknoticnucleus, ooplasma shrinkage and/or granulosa cell layers that had disorganized and detached from the basementmembrane. In each treatment, a total of 150 preantral follicles (30 per animal) were examined, which were classified as follicles without an antrum and with an oocyte, surrounded by one layer of flattened (primordial follicle), flattened and cuboidal (transitional follicle) or cuboidal granulosa cells (primary follicle), or with an oocyte surrounded by two or more layers of cuboidal granulosa cells (secondary follicle). In this study, data that were not normally distributed (Kolmogorov-Smirnov test), were submitted to logarithmic transformation. Comparisons of means (morphologically normal follicles) were analyzed by Kruskal-Wallis test and Mann-Whitney test, when appropriate. All statistical tests were performed using Sigma Plot 11 (Systat Software Inc., USA). Differences were considered significant when p < 0.05.
Results and discussion: Results of this experiment showed that although, absence of a CL (CL˗) resulted in a greater percentage of normal follicles for transitional (cultured samples on day 1) and primary follicles (post-thawed samples) when compared to that of ovaries bearing a CL (CL+), there was an exception. These results indicate that CL (+) samples also resulted in a greater percentage of normal primordial follicles (cultured samples on day 1) than that of CL (˗) samples (57.6% versus 39/3%, respectively). However, for all classes of preantral follicles during all stages (warming, day 1 or day 5), there were no significant differences in the percentages of normal follicles among Right and Left samples (P> 0.05).
Conclusion: It seems that follicles which are at beginning of their development (Primordial follicles) were not affected by presence of a CL as much as follicles at more advanced stages of development (transitional & primary). According to the results of this study, it can be concluded that, many factors such as presence or absence of a CL, types of preantral follicle classes, stages after vitrification (warming and days after culture) and interactions between these factors could influence the likelihood of a successful vitrification outcome.

Acosta TJ and Miyamoto A, 2004. Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Animal Reproduction Science 82:127-40.
Adams G, 1999. Comparative patterns of follicle development and selection in ruminants. Journal of reproduction and fertility. Supplement 54:17-32.
Barrett SL, Shea LD and Woodruff TK, 2010. Noninvasive Index of Cryorecovery and Growth Potential for Human Follicles In Vitro 1. Biology of Reproduction 82: 1180-9.
Bartlewski PM, Beard AP and Rawlings NC, 2001. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Animal Reproduction Science 65:231-44.
 Berisha B, Pfaffl MW and Schams D, 2002. Expression of estrogen and progesterone receptors in the bovine ovary during estrous cycle and pregnancy. Endocrine 17:207-14.
Boediono A, Rajamahendran R, Saha S, Sumantri C and Suzuki T, 1995. Effect of the presence of a CL in the ovary on oocyte number, cleavage rate and blastocyst production in vitro in cattle. Theriogenology 43:169-169.
Campbell B, Picton H, Mann G, McNeilly A and Baird D, 1991. Effect of steroid-and inhibin-free ovine follicular fluid on ovarian follicles and ovarian hormone secretion. . Journal of reproduction and fertility. Supplement 93:81-96.
Carvalho AA, Faustino LR, Silva CM, Castro SV, Lopes CA, Santos RR, Báo SN, Figueiredo JR and Rodrigues AP, 2013. Novel wide-capacity method for vitrification of caprine ovaries: Ovarian Tissue Cryosystem (OTC). Animal Reproduction Science 138: 220-7.
Castro SV, Carvalho AD, Silva CM, Santos FW, Campello CC, Figueiredo JR and Rodrigues AP, 2014. Fresh and vitrified bovine preantral follicles have different nutritional requirements during in vitro culture. Cell and Tissue Banking 15: 591-601.
Contreras-Solis I, Diaz T, Lopez G, Caigua A, Lopez-Sebastian A and Gonzalez-Bulnes A, 2008. Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Animal Reproduction Science 104:47-55.
Dela Pena EC, Takahashi Y, Katagiri S, Atabay EC and Nagano M, 2002. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction 123: 593–600.
Findlay J, Drummond A, Dyson M, Baillie A, Robertson D and Ethier JF, 2001. Production and actions of inhibin and activin during folliculogenesis in the rat. Molecular and Cellular Endocrinology 180:139-44.
Flynn J, Duffy P, Boland M and Evans A, 1999. Effect of synchronisation of oestrus using a progestagen sponge on ovarian follicular dynamics and luteinising hormone pulse frequency in sheep Journal of reproduction and fertility. Supplement 39.
 Fritzsche P, Riek M and Gattermann R, 2000. Effects of social stress on behavior and corpus luteum in female golden hamsters (Mesocricetus auratus). Physiology & Behavior 68:625-30.
Fukuda M, Fukuda K, Andersen CY and Byskov AG, 1996. Ovary and Ovulation: Contralateral selection of dominant follicle favours pre-embryo development. Human Reproduction 11:1958-62.
Fukuda M, Fukuda K, Andersen CY and Byskov AG, 2000. Right sided ovulation favours pregnancy more than left sided ovulation Human Reproduction 15:1921–1926 .
Gereš D, Ževrnja B, Žubčić D, Zobel R, Vulić B, Staklarević N and Gracin K, 2011. Asymmetrical functional activities of ovaries and tubular part of reproductive organs of dairy cows .  Veterinarskiarhiv 81: 187-198 .
Hajarian HShahsavari MHKarami-shabankareh H and Dashtizad M, 2016. The presence of corpus luteum may have a negative impact on in vitro developmentl competency of bovine oocytes. Reproductive Biology 16:47-52.
Hovatta I, Tennant RS, Helton R and Marr RA, 2005. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662-6.
Islam M, Khandoker M, Afroz S, Rahman M and Khan R, 2007. Qualitative and quantitative analysis of goat ovaries, follicles and oocytes in view of in vitro production of embryos. Journal of Zhejiang University-SCIENCE B 8:465-9.
Jamil H, Samad HA, Qureshi ZI, Rehman NU and Lodhi LA, 2008. Harvesting and evaluation of riverine buffalo follicular oocytes. The Turkish Journal of Veterinary and Animal Sciences 32: 25-30.
Karami Shabankareh H, Hajarian H, Shahsavari MH and Foroutanifar S, 2016 In vitro developmental competence of bovine oocytes in relation to side of ovaries, presence of corpus luteum and follicle size. Journal of Animal Science Researches  25: 93-105.
Karamishabankareh H, Hajarian H, Shahsavari M and Moradinejad R, 2015. In vivo and in vitro study of the function of the left and right bovine ovaries. Theriogenology 84;724–731.
Karlsson JOM. and Toner M, 1996. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials 17:243–256.
Kątska-Książkiewicz L, 2006. Recent achievements in in vitro culture and preservation of ovarian follicles in mammals. Reproductive Biology 6: 3-16.
 Kumar N, Paramasivan S, Sood P and Singh M, 2004. Micrometry of different category oocytes recovered from goat ovaries. Indian Journal of Animal Sciences 74:259–260.
Lan KC, Huang FJ, Lin YC, Kung FT, Lan TH and Chang SY,2010. Significantly superior response in the right ovary compared with the left ovary after stimulation with follicle-stimulating hormone in a pituitary down-regulation regimen. Fertility and Sterility 93;2269-2273.
McLaughlin M and Telfer EE, 2010. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139: 971-8.
Penitente-Filho JM, Carrascal E, Oliveira FA, Zolini AM, Oliveira CT, Soares ÍA and Torres CA, 2014. Influence of dominant follicle and corpus luteum on recovery of good quality oocytes for in vitro embryo production in Cattle. British Biotechnology Journal 4:1305-1312.
Pinto LC, Santos RR, Faustino LR, da Silva CM, Luz VB, Maia Junior JE, Soares AA, Celestino JJ, Mafezoli J, Campello CC and Figueiredo JR, 2008. Quantification of dimethyl sulfoxide perfusion in sheep ovarian tissue: a predictive parameter for follicular survival to cryopreservation. Biopreserv Biobank 6: 269-76.
Pirestrani A, Morteza S, Hajian M, Forouzanfar M, Moulavi F and Avedi P, 2010. Effect of ovarian cyclic status on in vitro embryo production in cattle. International Journal of Fertility and Sterility 4:172-5.
Sales AD, Duarte AB, Santos RR, Alves KA, Lima LF, Rodrigues GQ, Brito IR, Lobo CH, Bruno JB, Locatelli Y and Figueiredo JR, 2016. Modulation of aquaporins 3 and 9 after exposure of ovine ovarian tissue to cryoprotectants followed by in vitro culture. Cell and Tissue Research 365: 415-24.
Sangha G, Sharma R and Guraya S, 2002. Biology of corpus luteum in small ruminants. Small Ruminant Research 43:53-64.
 Santos M, Carrazzoni P, Paula-Lopes F, Neves J, Bartolomeu C and Lima P, 2007. Follicular dynamics in Anglo-Nubian goats using transrectal and transvaginal ultrasound. Small Ruminant Research 72:51-6.
Santos RR, Amorim C, Cecconi S, Fassbender M, Imhof M, Lornage J, Paris M, Schoenfeldt V and Martinez-Madrid B, 2010. Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds. Animal Reproduction Science 122: 151-63.
Santos RR, Van den Hurk R, Rodrigues AP and Figueiredo JR, 2011. Viability of oocytes and granulosa cells from cryopreserved ovine ovarian primordial, primary and secondary follicles. Small Ruminant Research 99: 203-7.
Santos RR, Van Haeften T, Roelen BA, Knijn HM, Colenbrander B, Gadella BM and Van den Hurk R, 2008. Osmotic tolerance and freezability of isolated caprine early-staged follicles. Cell and Tissue Research 333: 323.
Shabankareh  HK, Habibizad J, Sarsaifi K, Cheghamirza K and Jasemi VK, 2010. The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum oestradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research 93:180-5.
Shabankareh HK, Habibizad J and Torki M, 2009. Corpus luteum function following single and double ovulation during estrous cycle in Sanjabi ewes. Animal Reproduction Science 114:362-9.
Shabankareh HK, Kor NM and Hajarian H, 2013. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Animal Reproduction Science 140:109-14.
Sugulle AH, Dochi O and Koyama H, 2008. Developmental competence of bovine oocytes selected by Brilliant Cresyl Blue Staining: Effect of the presence of corpus luteum on embryo development. Journal of Mammalian Ova Research 25:50-5.
Taylor C and Rajamahendran R, 1994. Effect of mid-luteal phase progesterone levels on the first wave dominant follicle in cattle. Canadian Journal of Animal Science 74:281-5.
Taylor M, Song Y and Brockbank K, 2004. 22 Vitrification in Tissue Preservation: New Developments. Life in the Frozen State, BJ Fuller, N Lane, and EE Benson, eds, CRC Press, Boca Raton, FL 604-41.
Tsonis C, Baird D, Campbell B, Leask R and Scaramuzzi R, 1988. The sheep corpus luteum secretes inhibin. Journal of Endocrinology116:R3-R5.
Wildt DE and Wemmer C, 1999. Sex and wildlife: the role of reproductive science in conservation. Biodiversity Conserv 8: 965-76.