مقایسه اثر بافر بی‏کربنات سدیم با باکتری مگاسفر السدنی به عنوان مصرف کننده اسید تولیدی در شکمبه بر عملکرد رشد، قابلیت هضم، فراسنجه‏های شکمبه‌ای و خونی بره‏های پرواری در جیره با کنسانتره بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 هیات علمی گروه دامپزشکی دانشگاه آزاد اسلامی واحد یاسوج

چکیده

زمینه مطالعاتی: استفاده از باکتری مگاسفرا السدنی و مخمر در مقایسه با بافر بی‏کربنات سدیم می‏تواند در کاهش التهاب ناشی از اسیدوز موثر باشد. هدف: این پژوهش به منظور مقایسه تاثیر بافر بی‏کربنات سدیم با باکتری مگاسفرا السدنی و استفاده هم‌زمان آن با مخمر ساکرومایسیس سرویسیه به عنوان یک مصرف کننده اسید تولید شده در شکمبه در تعدیل pH شکمبه در جیره‏ی پرکنسانتره بر صفات عملکردی و هضم مواد مغذی در بره‏های پرواری انجام شد. روش کار: در این آزمایش از 24 بره نر عربی ۱ ± 4 ماهه با وزن kg 15/3 ± 9/23 در قالب طرح کاملا تصادفی با 3 تیمار و 8 تکرار استفاده شد. تیمارهای آزمایشی شامل 1- جیره‏ی شاهد 2- جیره شاهد + بافر بی‏کربنات سدیم 3- جیره شاهد + باکتری مگاسفرا السدنی و مخمر ساکرومایسیس سرویسیه (باکتری - مخمر) بودند. مایع شکمبه در ساعات صفر، 3 و 6 ساعت پس از خوراک‏دهی صبح برای سنجش pH و غلظت نیتروژن آمونیاکی توسط لوله معدی گرفته شد. نمونه‏های خون 3 ساعت پس از خوراک‏دهی صبح گرفته شد. در هفت روز آخر دوره، نمونه‏های مدفوع و ادرار جهت تعیین قابلیت هضم و ابقاء نیتروژن جمع آوری شدند. نتایج: اختلاف معنی‏داری در ماده خشک مصرفی، افزایش وزن روزانه، ضریب تبدیل غذایی، pH و نیتروژن آمونیاکی بین تیمارها مشاهده نشد (05/0P >). غلظت پروپیونات در جیره حاوی باکتری- مخمر به‏طور معنی‏داری بیشتر از سایر تیمارها بود (05/0p <). قابلیت هضم پروتئین در جیره شاهد و جیره حاوی باکتری - مخمر بیشتر و تفاوت معنی‏داری با جیره حاوی بافر داشت (05/0p <). میزان لیپوپروتئین با چگالی کم، در جیره دریافت کننده‏ی بافر و مکمل باکتری - مخمر نسبت به شاهد کمتر و اختلاف معنی‏داری را نشان داد (05/0P <). نیتروژن ابقا شده در جیره حاوی دریافت کننده‏ی باکتری - مخمر به‌طور معنی‌داری بیشتر از سایر جیره‌ها بود (05/0P <). ن

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the effect of sodium bicarbonate buffer with Megasphaera elsdenii as a rumen-consuming acid on growth performance, digestibility, rumen and blood parameters of lambs in high concentrate

نویسندگان [English]

  • Omid Khorasani 1
  • Morteza Chaji 2
  • Farshad Baghban 3
1 Agricultural Sciences and Natural Agricultural Sciences and Natural Resources University of Khuzestan
2 Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box 63517-73637, Mollasani, Ahvaz, Iran
3 Department of Veterinary Medicine, Azad University of Yasoj, Yasij, Iran
چکیده [English]

Introduction: The feeding of high fermentable carbohydrates in ruminants resulted in producing high amounts of organic acids in the rumen, followed by a decrease in rumen pH. In the animals not adapted to high levels of carbohydrate fermentation, rumen lactate concentrations increase unacceptably, because populations of lactate-utilizing bacteria such as Selenomonas ruminantium and Megasphaera elsdenii are low and cannot rapidly match and their proliferation need more time (Chaucheyras-Durand et al., 2008). It has been suggested that Saccharomyces cerevisiae can expand the population of Megasphaera elsdenii and increase lactate utilization (Calsamiglia et al., 2012). The use of yeast and bioactive compounds compared to the chemicals can be effective in reducing inflammation caused by acidosis (Aschenbach et al., 2019).
Material and methods: Twenty-four Arabic male lambs with Four months old and initial body weight of 23.9±3.15 kg were used in a completely randomized design with three treatments and eight replicates. The trial period consisted of 77 days (11 weeks) including 14 days of habituation period and 63 days (9 weeks) of recording period. The lambs were randomly assigned to one of three treatments: 1-control (no additive) 2-control + Sodium bicarbonate (1% daily diet in two meals) 3-control + Megasphaera elsdenii and Saccharomyces cerevisiae (bacterial-yeast). The amount of Megasphaera elsdenii was 3 ml per animal (4.5 × 108 cfu / ml) plus 2 g of Saccharomyces cerevisiae (7 × 10 9 cfu/g) (DFM) fed to the animals daily in the morning (Sedighi and Alipour, 2019). The diets were adjusted using the Small Ruminants Nutrition Requirements (NRC, 2007). The lambs were fed a fully mixed (TMR) ratio of 30% forage and 70% concentrate at two meals (8 and 16 hours) with free access to water. Ruminal fluid was taken by stomach tube at 0, 3 and 6 hours after morning feeding to measure pH and ammonia nitrogen (NH3-N) concentration. The ruminal fluid was analyzed for ammonia-N using a phenol-hypochlorite method (Broderick and Kang, 1980). On the last day of the experiment, rumen fluid was taken to measure the concentration of volatile fatty acids (5 ml of rumen fluid with 2 ml of 25% acid metaphosphoric acid (W / V) was mixed and stored at -20 ° C until analysis). Blood sampling were taken from each lamb within 3 h after the morning feeding from the jugular vein, and used EDTA as anticoagulant. Blood samples were analysed for glucose, blood urea nitrogen (BUN), total protein, cholesterol, triglycerides, LDL, HDL, creatinine and liver enzymes including aspartate amino transaminase (AST) and alanine aminotransferase (ALT). During the last 7 days of the period, total faeces and urine samples were collected to determine digestibility and nitrogen retention.
Results and discussion: No differences were observed between treatments in dry matter intake (DMI), daily weight gain (ADG), feed conversion ratio, pH and ammonia nitrogen (NH3 – N) (P > 0.05). Propionate concentration was higher in the bacteria-yeast treatment than other treatments (P <0.05). Megasphaera elsdenii is the only known rumen microorganism that can convert lactate to propionate by the acrylate pathway; when the lactate concentration increases, produces propionate and acetate and sometimes butyrate from it (Prabhu et al., 2012). Protein digestibility was higher in control and bacteria-yeast treatments than in buffer treatment (P <0.05). Low-density lipoprotein (LDL) was lower in buffer and bacteria-yeast treatments than in control treatment (P <0.05). Nitrogen retention was higher in the bacteria-yeast treatment than in the other treatments (P <0.05). Significance of nitrogen retention in the bacterial-yeast recipient treatment can be attributed to the decrease in ruminal ammonia nitrogen concentration, which appears to be due to increased nitrogen incorporation in the microbial protein, which is a logical consequence of increased rumen microbial activity (Paryad and Rashidi, 2009).
Conclusion: The use of acid-consuming bacteria, can be an effective way to modify rumen fermentation conditions of lambs fed with high concentrate diets and in the present experiment, its effect was competitive with the sodium bicarbonate chemical buffer on nutrient digestion and growth performance. Results from volatile fatty acids showed that bacteria-yeast treatments by leading the fermentation pathway to convert lactate to propionate could be beneficial for livestock health and its economic longevity.
Results and discussion: No differences were observed between treatments in dry matter intake (DMI), daily weight gain (ADG), feed conversion ratio, pH and ammonia nitrogen (NH3 – N) (P > 0.05). Propionate concentration was higher in the bacteria-yeast treatment than other treatments (P <0.05). Megasphaera elsdenii is the only known rumen microorganism that can convert lactate to propionate by the acrylate pathway; when the lactate concentration increases, produces propionate and acetate and sometimes butyrate from it (Prabhu et al., 2012). Protein digestibility was higher in control and bacteria-yeast treatments than in buffer treatment (P <0.05). Low-density lipoprotein (LDL) was lower in buffer and bacteria-yeast treatments than in control treatment (P <0.05). Nitrogen retention was higher in the bacteria-yeast treatment than in the other treatments (P <0.05). Significance of nitrogen retention in the bacterial-yeast recipient treatment can be attributed to the decrease in ruminal ammonia nitrogen concentration, which appears to be due to increased nitrogen incorporation in the microbial protein, which is a logical consequence of increased rumen microbial activity (Paryad and Rashidi, 2009).
Conclusion: The use of acid-consuming bacteria, can be an effective way to modify rumen fermentation conditions of lambs fed with high concentrate diets and in the present experiment, its effect was competitive with the sodium bicarbonate chemical buffer on nutrient digestion and growth performance. Results from volatile fatty acids showed that bacteria-yeast treatments by leading the fermentation pathway to convert lactate to propionate could be beneficial for livestock health and its economic longevity.

کلیدواژه‌ها [English]

  • Buffer
  • Lambs
  • Megasphaera elsdenii
  • Ruminal acidosis
  • Saccharomyces cerevisiae
AlZahal O, McGill H, Kleinberg A, Holliday JI, Hindrichsen IK, Duffield TF and McBride BW, 2014. Use of a direct-fed microbial product as asupplement during the transition period in dairy cattle. Journal of Dairy Science 97: 7102–7114.
Ansari A, Taghizadeh A and Janmohammadi H, 2011. Effects of different levels of yeast Saccharomyces cerevisiae on ruminal ecosystem and ciliate protozoa population in Ghizel sheep.  Iranian Journal of Animal Science Researches 22(1): 53-62.
AOAC. Association of Official Analytical Chemists. Official method of analysis. 15thed. 1990. Washington DC, USA.
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S and Penner GB, 2019. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Journal of Dairy Sscience 102(2), 1866-1882.
Beauchemin KA, Yang WZ, Morgavi DP,Ghorbani GR, Kautz W and Leedle JAZ, 2003. Effects of bacterial direct fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. Journal of Animal Science 81: 1628-1640.
Bodas R, Frutos P, Giraldez FJ, Hervas G and Lopez S, 2009. Effect of sodium bicarbonate supplementation on feed intake, digestibility, digest, kinetics, nitrogen balance and ruminal fermentation in young fattening lambs. Spanish journal of Agricultural Research 7(2): 330-341.
Broderick GA and Kang JH, 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Sscience 63; 64–75.
Calsamiglia S, Blanch M, Ferret A and Moya D, 2012. Is subacute ruminal acidosis a pH related problem? causes and tools for its control. Animal Feed Science andTechnology 172, 42–50.
Chaucheyras-Durand F, Walker ND and Bach A, 2008. Effect of active dry yeast on the rumen microbial ecosystem: past, Presetn and Future. Animal Feed Science and Technology 145: 5–26.
Chung YH, Walker ND, McGinn SM and Beauchemin KA, 2011. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. Journal of Dairy Science 94(5):2431-2439.
Cruywagen CW, Taylor S, Beya MM and Calitz T, 2015. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. Journal of Dairy Sscience 98(8):5506-5514.
Der Bedrosian M, 2009. The effect of sodium bicarbonate or live yeast culture Saccharomyces cerevisiae on the metabolism and production of lactating dairy cows Doctoral dissertation, department Animal science, University of Delaware.
Dhama K, Mahendran M, Tomar S and Chauhan RS, 2008. Beneficial effects of probiotics and prebiotics in livestock and poultry: The current perspectives. Intas Polivet 9: 1-12.
Drouillard JS, Henning PH, Meissner HH and Leeuw KJ, 2012. Megasphaera elsdenii on the performance of steers adapting to a high-concentrate diet, using three or five transition diets. South African Journal of Animal Science 42(2): 195-199.
He ML, Long J, Wang Y, Penner G and McAllister TA, 2015. Effect of replacing barley with wheat grain in finishing feedlot diets on nutrient digestibility, rumen fermentation, bacterial communities and plasma metabolites in beef steers. Livestock Science 176: 104-110.
Kawas JR, Garcia-Castillo R, Fimbres-Durazo H, Garza-Cazares F, Hernandez-Vidal JFG, Olivares-Saenz E and Lu CD, 2007. Effects of sodium bicarbonate and yeast on nutrient intake, digestibility, and ruminal fermentation of light-weight lambs fed finishing diets. Small Ruminant Research 67: 149–156.
Khorasani GR and Kennelly JJ, 2001. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. Journal of Dairy Sscience 84, 1707–1716.
Kohn RA, Dinneen MM and Russek-Cohen E, 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. Journal of Dairy Sscience 83: 879–889.
Kung L, Kreck EM, Tung RS, Hession AO, Sheperd AC, Cohen MA, Swain HE and Leedle JAZ, 1997. Effects of a live yeast culture and enzymes on in-vitro ruminal fermentation and milk production of dairy cows. Journal of Dairy Sscience 80: 2045-2057.
Liu DC, Zhou XL, Zhao PT, Gao M, Han HQ and Hu HL, 2013. Effects of increasing non-fiber carbohydrate to neutral detergent fiber ratio on rumen fermentation and microbiota in goats. Journal of Integrative Agriculture 12: 319–326.
Malekkhahi M, Tahmasbi AM, Naserian AA, Danesh Mesgaran M, Kleen JL and Parand AA, 2015. Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high‐concentrate diets. Journal of animal physiology and animal nutrition 99(2): 221-229.
Malekkhahi M, Tahmasbi AM, Naserian AA, Danesh-Mesgaran M, Kleen JL, Al-Zahal O and Ghaffari MH, 2016. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Animal Feed Science and Technology 213: 29-43.
Mohammadabadi T, Bakhtiari MA and Alimirzaei P, 2018. Isolation and identification of Lactate-Producing and utilizing bacteria from the rumen of najdi goats. Indian Journal of Small Ruminants 24(2): 276-280.
NRC, 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academy Press, Washington DC.
Paryad A and Rashidi M, 2009. Effect of yeast (Saccharomyces cerevisiae) on apparent digestibility and nitrogen retention of tomato pomace in sheep. Pakistan Journal of Nutrition 8(3): 273-278.
Philippeau C, Lettat A, Martin C, Silberberg M, Morgavi DP, Ferlay A, Berger C and Noziere P, 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. Journal of dairy science 100(4): 2637-2650.
Prabhu R, Altman E, Eiteman MA, 2012. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl. Environ.Microbiol 78: 8564–8570.
Puniya AK, Salem AZM, Kumar S, Dagar SS, Griffith GW, Puniya M, Ravella SR, Kumar N, Dhewa T and Kumar R, 2015. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. Journal of Integrative Agriculture 14: 550-560.
Reynolds CK, 2006. Production and metabolic effects of site of starch digestion in dairy cattle. Animal Feed Science and Technology 130(1-2): 78-94.
Rezaei J, Rouzbehan Y, Fazaeli H and Zahedifar M, 2014. Effects of substituting amaranth silage for corn silage on intake growth performance, dietdigestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs. Animal feed science and technology 192: 29–38.
RostamzadehP, 2015. Effects of saccharomyces cerevisiae yeast on digestibility of finishing diets, ruminal and blood metabolites in sheep. Iranian Journal of Animal Science Researches 25(2): 175-188.
Russell KE and Roussel AJ, 2007. Evaluation of the ruminant serum chemistry profile. Veterinary Clinics of North America: Food Animal Practice 23(3): 403-426.
Sedighi R and Alipour D, 2019. Assessment of probiotic effects of isolated Megasphaera elsdenii strains in Mehraban sheep and Holstein lactating cows. Animal Feed Science and Tchnology 248: 126-131.
Tripathi MK, Santra A, Chaturvedi OH and Karim SA, 2004. Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Animal Feed Science and Technology 111: 27–39.
Van Soest PJ, Robertson JB and Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. Journal of dairy science 74: 3583–3597.
Yoon IK and Stern MD, 1996. Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. Journal of Dairy Sscience 79(3): 411-417.
Zali A, Nasrollahi SM and Khodabandelo S, 2019. Effects of two new formulas of dietary buffers with a high buffering capacity containing Na or K on performance and metabolism of mid-lactation dairy cows. Preventive Veterinary Medicine 163: 87-92.
Zhang Y, Liu K, Hao X and Xin H, 2017. The relationships between odd‐and branched‐chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. Journal of Animal Physiology and Animal Nutrition 101(6): 1103-1114.