طراحی آنتی ژن حفاظتی پلی توپیک علیه انگل اکینوکوکوس گرانولوزوس برای هر دو میزبان اصلی و واسط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده کشاورزی

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استاد، دانشگاه تبریز

4 استاد گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه تبریز

چکیده

زمینه مطالعاتی: انگل اکینوکوکوس گرانولوزوس عامل بیماری زئونوتیک کیست هیداتیک است که در بسیاری از واحدهای دامپروری و بویژه در مناطق روستایی و حومه شهرها به لحاظ اپیدمیولوژی در وضعیت اندمیک است. میزبان‌های طبیعی این پاتوژن انگلی به طور عمده سگ (به عنوان میزبان اصلی)، گوسفند و انسان (به عنوان میزبان واسط) هستند. امروزه کنترل و پیشگیری این بیماری عمدتا محدود به اجرای برنامه‌های آموزشی، نظارتی و مدیریتی در مزارع دامپروری و کشتارگاه‌ها بوده است. در دهه اخیر توجه جدی به توسعه واکسن پیشگیرانه بوجود آمده است. هدف از این مطالعه معرفی ابزارها و نرم افزارهای بیوانفورماتیک هستند که در ‌طراحی آنتی ژن حفاظتی مفید خواهند بود. روش کار: در این مطالعه از ابزارهای پیشگویی کننده ی اپی‌توپ مربوط به مربوط به سیستم ایمنی سلولی و هومورال استفاده گردید. همچنین از نرم افزار مدلر برای مدلینگ ساختار سوم هر یک از آنتی ژن های حفاظتی استفاده گردید. داکینگ مولکولی بین مولکول های MHC اختصاصی گونه و نیز پپتیدهای کاندید اپی توپ سلول T مورد استفاده قرار گرفت. برای این کار از نرم افزار Hex ورژن 8 استفاده شد. نتایج: شاخص های ایمونوژنیک مربوط به هر یک از آنتی‌ژن ها در قالب یک سازه آنتی ژن حفاظتی مرتب گردید و توسط لینکرهای اختصاصی در کنار هم قرار گرفتند. سپس کدون ها ی این سازه آنتی ژن حفاظتی برای بیان در میزبان پروکاریوتی (Escherichia coli k12) بهینه گردید. نتیجه گیری نهایی: در این مطالعه ی بیوانفورماتیک، اطلاعات کلیدی در خصوص روش شناسی گام به گام طراحی دنوو آنتی ژن حفاظتی علیه بیماری انگلی اکینوکوکوس گرانولوزوس ارائه شده است. که به نظر می رسد قابلیت حفاظت همزمان سگ و گوسفند در برابر این بیماری را داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Polytopic Protective Antigen Against Echinococcus granulosus for the Both of Definitive and Intermediate Hosts

نویسندگان [English]

  • gholamali Moghaddam 1
  • Mohammad Mostafa Pourseif 2
  • Hossein Daghighkia 3
  • ahmad nematollahi 4
2 PhD of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Professor, Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 Professor, Department of Pathobiology, Faculty of Veterinary, University of Tabriz, Tabriz, Iran
چکیده [English]

Introduction: The hydatid disease is one of the most important zoonotic parasitic infections all-round the world. The main part of Echinococcus granulosus life cycle depends upon the growth and differentiation of protoscoleces (PSCs) within the intestine of definitive hosts (Carmena and Cardona 2014). The survival of organism is mainly dependent on its indirect transmission cycle from the definitive hosts (particularly dogs) to the intermediate hosts, including sheep and human. According to the latest updated report of the World Health Organization (WHO) in March 2017, there may be over one million infected cases with echinococcosis at any time (WHO, 2017). A hydatid cyst (HC) encompasses numerous PSCs and cyst fluid, and is formed in visceral organs (liver and lung) of the infected intermediate hosts (Bingham et al. 2014). Morphogenesis of PSCs from the cystic viscera into worm’s head occurs on the surface of the small intestine of the definitive host, and then the head-like structure attaches to the gut epithelial lining and develops into an adult worm within ~50 days (Moro and Schantz 2009). The currently used treatment modalities against echinococcosis, as multi-stage parasitic infection, are based on the anthelmintic drugs such as praziquantel. In this case there is an emergency to improve preventive interventions such as vaccination in addition to hygiene practices. Several constraining factors may influence the vaccine development against such multi-stage pathogens, including economic, socio-cultural issues (Bethony et al. 2011). Thus, it is necessary to implement a rationalized approach towards construction of multipotent vaccines. In silico modeling of vaccines provides a cost- and time-effective approach that can improve such developing effective vaccines (Gori et al. 2013). Ideally, a vaccine construct, to be highly effective, should encompass several parts, including epitopes of one/more VCAs, B-cells epitope and T-cells epitopes (BEs and TEs, respectively) (Pourseif et al. 2017a). Altogether, epitope-based vaccines (EVs) seem to be one of the most effective vaccines. The aim of this study is to design a novel multi-epitope B- and helper T-cell based vaccine construct for immunization of both dog and sheep against this multi-host parasite.
Material and Methods: After antigen sequence selection (GenBank: AEA09024 for eg95 and GenBank: AMX81438 for eg1433), three-dimensional structure of the antigens was modeled and multilaterally validated. The preliminary parameters for B-cell epitope prediction were implemented such as probably transmembrane helix, signal peptide, post-translational modifications. The high ranked B-cell epitopes derived from several online web-servers (e.g., BepiPred v1.0, BcePred, ABCpred, SVMTrip, IEDB algorithms, SEPPA v2.0 and Discotope v2.0) were utilized for multiple sequence alignment and then for engineering the vaccine construct. T-helper based epitopes were predicted by docking between the high frequent Ovar class II allele (Ovar-DRB1*1202) and Dog class II allele (DLA-DRB1*01501) and hexadecamer fragments of the antigens. Having used the immune-informatics tools, we formulated the first bi-valent vaccine based on T-helper epitope with high-binding affinity to sheep and dog MHC alleles. The final vaccine construct was formed by using the molecular spacers and then analyzed for different physicochemical properties.
Results and Discussion:The results of different predictor tools showed that there were four and two potential glycosylation sites in eg1433 and eg95 antigens, respectively. In eg1433 antigen was not observed any transmembrane topology and signal peptide in the protein sequence, however in eg95 antigens was observed a signal peptid residue (aa 1 - 17) and transmembrane fragment (140-MTSGSALTSAIAGFVFSCIVVVL-162). Based on the axiom of immune system properties in response to the more accessible part of the antigens (Ranjbar et al. 2015), in our work we do not considered the transmembrane and signal peptide regions for epitope prediction. The post-translational modification in eg1433 (aa 3, 68, 233, and 238) and eg95 (aa 62 and 70) were also filtered during in silico epitope mapping. These post translationally modified residues are covered by different types of carbohydrate chains and can not likely interact with the immune system elements (Reverberi and Lorenzo 2007). The modeling quality indices (DOPE score and GA431) of the eg95 antigen were -16677.38 kcal/mol and 0.98. The quality scores for eg1433 were -19188.43 kcal/mol and 1.0. These values showed that the structure modeling is implemented with high quality. Some of our predicted epitopes of eg95 antigen were previously reported by Woollard et al. (1998) based on the wet-lab epitope mapping methods (Woollard et al. 1998). However, the eg1433-based epitopes that predicted in our study are for the first time repoted. T-cell epitopes of eg95 and eg1433 (aa 33 – 48 and aa 60 – 72, respectively) were the residues that predicted by docking-based methods. This type of in silico epitope mapping against E. granulosus antigens was not reported previously. The overall processes for establishing such EBVs are as follows: (i) identification and selection of the best antigen from the local and/or global strains, (ii) utilize of bioinformatics tools for in silico analysis of different parameters of selected antigen(s), (iii) computational-based epitope prediction, and (iv) linking epitopes using proper molecular linkers (Toussaint and Kohlbacher 2009).
Conclusion: In this in silico study, we represented a key data on the step-by-step methodologies used for designing this minigene vaccine. It can be as a promising platform for generation of broadly protective host-specific vaccine against E. granulosus.

کلیدواژه‌ها [English]

  • Cellular immunity
  • Echinococcus granulosus
  • Epitope
  • Humoral immunity
  • Protective antigen
Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MWand Loukas A, 2011. Vaccines to combat the neglected tropical diseases. Immunology Review 239(6) 237-70.
Bingham GM, Budke CM, Larrieu E, Del Carpio M, Mujica G and Slater MR, 2014. A community-based study to examine the epidemiology of human cystic echinococcosis in Rio Negro Province, Argentina. Acta Tropical 136(4) 81-8.
Carmena D and Cardona GA, 2014. Echinococcosis in wild carnivorous species: epidemiology, genotypic diversity, and implications for veterinary public health. Veterinary Parasitology 202: 69-94.
Cong H, Zhang M, Zhang Q, Gong J, Cong H, Xin Q and He S, 2013. Analysis of structures and epitopes of surface antigen glycoproteins expressed in bradyzoites of Toxoplasma gondii. Biomedal Research International 89(3)165342.
Craig PS, McManus DP, Lightowlers MW, Chabalgoity JA, Garcia HH, Gavidia CM, Gilman RH, Gonzalez AE, Lorca M, Naquira C, Nieto A, and Schantz PM, 2007. Prevention and control of cystic echinococcosis. Lancet Infection Diseases 7(6)385-394.
Dalbey R and Von Heijne G, 2002. Protein targeting, transport, and translocation, Academic Press.
Deplazes  P, Thompson RC, Constantine CC, and Penhale WJ, 1994. Primary infection of dogs with Echinococcus granulosus: systemic and local (Peyer's patches) immune responses. Veterinary Immunology and Immunopathology 40(2) 171-184.
Eckert J and Deplazes P, 2004. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Review 17(1) 107-135.
Fiser A and Sali A, 2003. Modeller: generation and refinement of homology-based protein structure models. Methods in Enzymology 374: 461-491.
Funakoshi M and Hochstrasser M, 2009. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26(3) 185-92.
Gan W, Zhao G, Xu H, Wu W, Du W, Huang J, Yu X, and Hu X, 2010. Reverse vaccinology approach identify an Echinococcus granulosus tegumental membrane protein enolase as vaccine candidate. Parasitology Research 106(4) 873-882.
Gori A, Longhi R, Peri C and Colombo G, 2013. Peptides for immunological purposes: design, strategies and applications. Amino Acids 45: 257-68.
Janeway CA, Travers P, Walport M, and Shlomchik M, 2005. Immunobiology: the immune system in health and disease. New York: Garland Science.
Kern P, 2003. Echinococcus granulosus infection: clinical presentation, medical treatment and outcome.  The Archives of Surgery 388(6) 413-420.
Kitchen DB, Decornez H, Furr JR and Bajorath J, 2004. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews. Drug Discovery. 3(11): 935-49.
Laskowski RA and Swindells MB, 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling 51(10) 2778-2786.
Li YJ, Yang J, Zhao H, Jia HY, Zhang LN, Liu XX, Ma XM, Wen H, and Ding JB, 2012. Bioinformatics prediction of egA31 recombinant antigen epitopes of Echinococcus granulosus. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 30(1) 78-80.
Li ZJ, Wang YN, Wang Q, and Zhao W, 2012. Echinococcus granulosus 14-3-3 protein: a potential vaccine candidate against challenge with Echinococcus granulosus in mice. Biomedical Environmental Sciences 25(3) 352-358.
Lu G, Lu Y, Li L, Wu L, Fan Z, Shi D, Wang H, and Han X, 2010. Identification and bioinformatics analysis of lactate dehydrogenase genes from Echinococcus granulosus. Asian Pacific Journal of Tropical Medicine 3(10) 757-761.
Ma X, Zhou X, Zhu Y, Li Y, Wang H, Mamuti W, Li Y, Wen H, and Ding J, 2013. The prediction of T- and B-combined epitope and tertiary structure of the Eg95 antigen of Echinococcus granulosus. Experimental and Therapeutic Medicine 6(3) 657-662.
Moro P and Schantz PM, 2009. Echinococcosis: a review. International Journal of Infection Diseases 13(2) 125-133.
Otero-Abad B and Torgerson PR, 2013. A systematic review of the epidemiology of echinococcosis in domestic and wild animals. PLoS Neglected Tropical Diseases 7(6) 2249.
Parker JM, Guo D, and Hodges RS, 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19) 5425-5432.
Parvizpour S, Pourseif MM, Razmara J, Rafi MA and Omidi Y, 2020. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today 25(6) 1034-1042.
Patronov A and Doytchinova I, 2013. T-cell epitope vaccine design by immunoinformatics. Open Biology 3(1) 120-139.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and Ferrin TE, 2004. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13) 1605-1612.
Poland GA, Ovsyannikova IG, and Kennedy RB, 2017. Personalized vaccinology: A review. Vaccine (In Press).
Pourseif MM, Moghaddam Gh, Naghili B, Saeedi N, Parvizpour S, Nematollahi A, and Omidi Y, 2018. A novel in silico minigene vaccine based on CD4(+) T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Computational Biological and Chemistry 72: 150-163.
Pourseif MM, Moghaddam Gh, Saeedi N, Barzegari A, Dehghani J, and Omidi Y, 2018. Current status and future prospective of vaccine development against Echinococcus granulosus. Biologicals 51: 1-11.
Pourseif MM, Moghaddam Gh, Daghighkia H, Nematollahi A, Omidi Y, 2018b. A novel B- and helper T-cell epitopes-based prophylactic vaccine against Echinococcus granulosus. BioImpacts 8(1) 39-52.
Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam Gh, Nematollahi A, 2019. A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. BioImpacts 9(3) 131-144.
Pourseif MM, Moghaddam Gh, Nematollahi A, Khordadmehr M, Naghili B, Dehghani J, Omidi Y, 2021. Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Tropica 218: 105883.
Ritchie DW, 2008. Recent progress and future directions in protein-protein docking. Current Protein Peptide Science 9(1) 15-1.
Reverberi R and Reverberi L, 2007. Factors affecting the antigen-antibody reaction. Blood Transfusion 5(4): 227-240.
Shao JJ, Wong CK, Lin T, Lee SK, Cong GZ, Sin FW, Du JZ, Gao SD, Liu XT, Cai XP,  Xie Y, Chang HY, Liu JX, 2011. Promising multiple-epitope recombinant vaccine against foot-and-mouth disease virus type O in swine. Clinical and Vaccine Immunology 18(1) 143-9.
Shi Z, Wang Y, Li Z, Li Z, Bo Y, Ma R, and Zhao W, 2009. Cloning, expression, and protective immunity in mice of a gene encoding the diagnostic antigen P-29 of Echinococcus granulosus. Biochiemica et  Biophysica Acta(Shanghai) 41(1) 79-85.
Toussaint NC and Kohlbacher O, 2009. Towards in silico design of epitope-based vaccine. Expert Opinion Drug Discovery 4(10) 1047-1060.
Tsirigos KD, Peters C, Shu N, Kall L, and Elofsson A, 2015. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Research 43: 401-407.
Vercruysse J, Knox DP, Schetters TP, and Willadsen P, 2004. Veterinary parasitic vaccines: pitfalls and future directions. Trends Parasitol 20(10) 488-492.
World Health Organization (WHO),2017.Echinococcosis. Available at: http://wwwwhoint/mediacentre/factsheets/fs377/en/.
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD and Hochstrasser DF, 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology 112: 531-552.
Woollard DJ, Gauci CG, Heath DD, and Lightowlers MW, 1998. Epitope specificities and antibody responses to the EG95 hydatid vaccine. Parasite Immunology 20(11) 535-540.