بررسی اثر فرآورده‌های فرعی انار (روغن و پوست انار) بر تولید گاز متان در شرایط برون تنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشگاه بیرجند

2 گروه علوم دامی دانشگاه فردوسی مشهد

چکیده

چکیده
زمینه مطالعاتی:  افزودن برخی ترکیبات به جیره نشخوارکنندگان می­تواند تولید متان را در شکمبه کاهش دهد. هدف: هدف از انجام این آزمایش بررسی اثر فرآورده­های انار (روغن خالص انار و پودر پوست انار) بر تولید گاز متان شکمبه­ای تحت شرایط برون­تنی بود. روش کار: سوبسترای خوراکی پایه حاوی مخلوطی از یونجه خشک و کنسانتره بود که با نسبت 60 به 40 با هم مخلوط شدند. در آزمایش اول روغن انار به میزان 2، 4 و 6 درصد ماده خشک سوبسترا و در آزمایش دوم پودر پوست انار به میزان 5/2، 5 و 7 درصد ماده خشک سوبسترا به محیط کشت اضافه شد. تخمیر آزمایشگاهی با استفاده از مایع شکمبه و محیط کشت بی­هوازی (منک و استینگاس 1988) در بطری­های با حجم 120 میلی لیتر انجام گردید. محیط کشت بی­هوازی (30 میلی لیتر) و ماده تلقیحی (10 میلی لیتر) درون هر بطری 120 میلی لیتری حاوی 200 میلی گرم سوبسترای خوراکی پایه ریخته شد. میزان تولید گاز در ساعت­های 2، 4، 6، 8، 12، 16، 24، 48، 72 و 96 و میزان گاز دی اکسید کربن و متان پس از 24 ساعت انکوباسیون تعیین گردید و داده­ها با نرم افزار آماری SAS و با رویه GLM در قالب طرح کامل تصادفی آنالیز شد. نتایج: نتایج آزمایش اول نشان داد استفاده از روغن انار میزان تولید گاز شکمبه­ای را در ساعت­های مختلف  تحت تاثیر قرار نداد و فراسنجه­های هضم، انرژِی قابل متابولیسم و قابلیت هضم ماده آلی نیز تحت تاثیر تیمارهای مختلف قرار نگرفت.  استفاده از 6 درصد روغن انار میزان تولید متان را بطور معنی­داری کاهش داد (05/0p <) در حالی که مقادیر کمتر آن تاثیر معنی­داری بر تولید گاز متان نداشت. در آزمایش دوم استفاده از پودر پوست انار به میزان 5 و 5/7 درصد ماده خشک مقدار گاز تولیدی شکمبه را  در ساعت­های 48، 72 و 96 انکوباسیون بطور معنی­داری کاهش داد. همچنین درصد گاز متان تیمارهای حاوی پوست انار در مقایسه با تیمار شاهد بطور معنی­داری کاهش یافت (05/0p <) اما تولید متان بین تیمارهای حاوی غلظت­های مختلف پوست انار تفاوتی نداشت. نتیجه­گیری نهایی: با توجه به نتایج حاصله افزودن فرآورده­های فرعی انار می­تواند تولید گاز متان و اتلاف انرژی را تا حد زیادی در شکمبه کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

In vitro study of pomegranate by-products on methane production

نویسندگان [English]

  • F Khosravi 1
  • MH Fathi 1
  • SA Vakili 2
  • H Farhangfar 1
چکیده [English]

Introduction: Use of antibiotic growth promoters (AGP) in broiler diets has been banned in the European Union and in many countries. Therefore, researches have focused on the development of alternative strategies. Various products and natural materials such as probiotics, prebiotics, organic acids, and plant extracts have been tested as effective alternatives to AGPs. L-Carnitine (β-hydroxy-γ-trimethyl amino butyrate) is a water soluble quaternary amine and exists naturally in microorganisms, plants, and animals (Dikel et al., 2010). L-Carnitine is synthesized exclusively in the liver of animals and plays a key role in energy metabolism of cells, mainly by transferring long-chain acyl groups from cytoplasm to mitochondrial matrix for β- oxidation (Dikel et al., 2010). It has been reported that the addition of L-carnitine to broiler breeder diet in early stages of growth improved their performance (Golzar-adabi et al. 2005). Inclusion of L-Carnitine to young animal diet improves use of fatty acids and their energy efficiency; therefore, it improves growth and feed conversion ratio (Zhang et al. 2010).
In the folklore of many cultures, garlic (Allium sativum L.) has been widely used as a therapeutic agent. Garlic has rich organosulfur compounds and metabolites (allicin, diallyl sulfide, and diallyl trisulfide) (Kim et al., 2009). Allicin and its related compounds in garlic inhibit the HMG-CoA reductase enzyme, which plays a key role in the formation of liver cholesterol; then, allicin decreases cholesterol levels (Anthony et al. 2005). Duration of L-Carnitine and garlic supplementation in broiler chicken diet may have different effects on broiler chicken performance. Therefore, the aim of this study was to investigate the duration of supplementation of L-Carnitine and garlic powder on broiler chicken performance, serum biochemistry, carcass parameters, and meat quality. 
Materials and methods: In order to consider the effects of L-carnitine and garlic powder on broiler chicken performance, blood metabolites and carcass characteristics, a total of 480 Arian one-day-old broiler chicks were allocated to 2×5 factorial arrangements in a completely randomized design with 5 dietary treatments, 4 replicates, and 12 birds in each replicate. Dietary treatments were 1) basal diet with no additive (BD), 2) BD plus 0.02% flavomycin antibiotic (positive control), 3) diet containing 1.5% garlic powder, 4) BD plus 0.025% L-Carnitine, and 5) diet containing 0.025% L-Carnitine plus 1.5% garlic powder in two periods (short term: first 3 weeks and long term: 6 weeks period). The birds were kept under conventional conditions for vaccination, temperature, ventilation, and lighting based on Arian catalogue recommendations. The birds fed experimental diets from 1 to 42 days of age and standard management practices of commercial broiler production were applied. The broiler diets were formulated based on standardized ileal digestible amino acids and other requirements were obtained from Arian catalogue recommendations. During the experiment, body weight and feed intake were recorded and finally feed conversion ratio and European production efficiency factor were calculated. From 2 birds of each pen, blood samples were collected at the end of experiment, then cholesterol, triglycerides, HDL-cholesterol, and LDL-cholesterol were detected. At 42 d, 2 broiler chickens per replicate were selected and sacrificed. Carcass, spleen, bursa of Fabricius, abdominal fat, thigh, and breast percentages were expressed as their percentages to live body weight. Thigh and breast meat pH and color were measured by pH meter (330i/SET WTW model) and electric colorimeter (1002 model- RGB Lutron), respectively. The lactate concentration of the breast meat was estimated by a spectrophotometer and calculated using the following formula (Zhang et al., 2009):
Lactate concentration =  ×22
Results and discussion: Results showed that supplementation length and dietary treatments did not affect broiler chickens body weight, feed intake, feed conversion ratio, meat pH, serum triglyceride, cholesterol, HDL-cholesterol, and LDL-cholesterol, and breast meat lactate concentrations (P>0.05). Dietary treatments and supplementation period significantly influenced breast, bursa, and abdominal fat percentage (p < 0.05). L-Carnitine positively facilitates consumption of short and medium chain fatty acids by the mitochondria (Tan et al. 2008). Therefore, the diet containing L-Carnitine stimulates the oxidation of fatty acids to produce adenosine triphosphate and use of energy. In addition, positive effect of garlic powder on performance of broiler chicks can be attributed to the antioxidant and some growth-promoting effects of this herbal plant (Anthony 2005).
Conclusion It was concluded that application of the dietary supplements (0.025% L-Carnitine plus 1.5% garlic powder) in a short or long period, are not advisable for broiler chicken diets, since they make the rations more expensive.

Abbasi H, Rezaei K and Rashidi L, 2008. Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. Journal of American Oil Chemistry Society 85: 83–89.
Afshar Hamidi B, Pirmohammadi R and Mansouri H, 2014. The effects of thymus plant on digestibility parameters and fermentable methane and CO2 production of some feed by in vitro method. Journal of Animal Sciences Researches (Agricultural Science) 24: 163-175 (in Persian).
 Arndt C,  Powell JM, Aguerre MJ,  Wattiaux  MA, 2015. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. Journal of Dairy Science 98:418–430.
Beauchemin KA, Kreuzer M, Mara FO and McAllister TA, 2008. Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture 48:21–27.
Beauchemin KA, McGinn SM, Martinez TF and McAllister TA, 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science 85:1990–1996.
Benchaar C, Petit HV, Berthiaume R, Ouellet DR, Chiquette J and Chouinard PY, 2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. Journal ofDairy Science 90:886–897.
Busquet M, Calsamiglia S, Ferret A and Kamel C, 2006. Plant extracts affects in vitro rumen microbial fermentation. Journal of Dairy Science 89:761–771.
Chow TT., Fievez V, Moloney AP, Raes K, Demeyer D and De Smet S, 2004, Effect of fish oil on in vitro rumen lipolysis, apparent biohydrogenation of linoleic and linolenic acid and accumulation of biohydrogenation intermediates. Animal Feed Science and Technology 117:1–12.
Czerkawski JW (1986) An Introduction to Rumen Studies. Pergamon Press, Oxford (UK)/New York (NY, USA.
Delgado DC, González R, Galindo J, Dihigo LE, Cairo J and Almeida M, 2013. Effect of the coconut oil on the consumption, digestion of nutrients and methane production in sheep fed with forage and concentrate. Cuban Journal of Agricultural Science 47:381-384.
Dohme F, Machmuller A, Wasserfallen A and Kreuzer M, 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Letters in Applied Microbiology  32(1):47–51.
Fievez V, Babayemi OJ and Demeyer D, 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology 123-124: 197-210.
Fievez V, Boeckaert C, Vlaeminck B, Mestdagh J and Demeyer D, 2007. In vitro examination of DHA-edible micro algae: 2. Effect on rumen methane production and apparent degradability of hay. Animal Feed Science and Technology 136(1-2):80–95.
Frutos P, Hervas G, Giraldez FJ and Mantecon AR, 2004. Review: Tannins and ruminant nutrition. Spanish Journal of Agricultural Research 2 (2): 191–202.
Garcia-Gonzalez R, Lopez S, Fernandez M, Bodas R and Gonzalez JS, 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro.  Animal Feed Science and Technology 147: 36–52.
Hironaka R, Mathison GW, Kerrigan BK and Vlach I, 1996. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Science of the Total Environment 180: 221–227.
Jayanegara A, Leiber F and Kreuzer M, 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition 96:365–375.
Jenkins TC and Palmquist DL, 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science 67: 978-986.
Johnson KA and Johnson DE, 1995. Methane emissions from cattle. J Anim Sci 73: 2483–2492.
Jordan E, Kenny D, Hawkins M, Malone R, Lovett DK and OMara FP, 2006. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science 84: 2418-2425.
Kim ET, Kim CH, Min KS and Lee SS, 2012. Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian-Australasian Journal of Animal Sciences 25: 806-811.
Kyralan M, Golukcu M and Tokgoz H, 2009. Oil and Conjugated linolenic acid contents of seeds from important pomegranate cultivars (Punica granatum L.) grown in Turkey. Journal of the American Oil Chemists' Society 86:985–990.
Lansky EP and Newman RA, 2007. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. Journal of Ethnopharmacology 109:177-206.
Lillis L, Boots B, Kenny DA, Petrie K, Boland TM, Clipson N and Doyle EM, 2011. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. Journal of Applied Microbiology 111(6):1426–1435.
Machmuller A, 2006. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agriculture, Ecosystems & Environment 112:107–114.
Machmuller A, Ossowski DA and Kreuzer M, 2000. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Science and Technology 85:41–60.
Machmuller A, Soliva CR and Kreuzer M, 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reproduction Nutrition Development. 43:41–55.
Mc Sweeney CS, Palmer B, McNeill DM and Krause DO, 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology 91: 83–93.
Menke KH and Steingass H, 1988 Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development 28: 7–55.
Menke KH, Raab L, Salewski A, Steingass H, Fritz D and Schneider W, 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science 93: 217-222.
NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC.
Oliveira A, Narciso CD, Bisinotto RS, Perdomo MC, Ballou MA, Dreher M and Santos JEP, 2010. Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. Journal of Dairy Science 93: 4280–4291.
Ørskov ER and McDonald I, 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the passage rate. Journal of Agricultural Science 92: 499-503.
Patra AK, 2012. Enteric methan emitigation technologies for ruminant livestock: a synthesis of currentres earch and future directions.Environmental Monitoring and Assessment 184: 1929–1952.
Patra AK and Yu Z, 2012. Effects of essential oils on methane production, fermentation, abundance and diversity of rumen microbial populations. Applied and Environmental Microbiology. 78: 4271–4280.
Patra AK, Kamra DN and Agarwal N, 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. Journal of the Science of Food and Agriculture  90(3):511- 520.
Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A and Urich T, 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Comm. 4:1428. http://dx.doi.org/10.1038/ncomms2432.
Safari R, Valizadeh R, Kadkhodayi R, Alamolhada H, Tahmasbi A and Naserian A, 1391. Investigation of the resistance of fish oil microcapsules in ruminal conditions and their effect on gas production and digestibility in invitro. Iranian Journal of Animal Science Research 4: 265-273 (in Persian).
SAS Institute, 2001. Statistical Analysis Systems Institute. Version 8. SAS Institute Inc., Cary, NC.
Sharp R, Ziemer CJ, Stern MD and Stahl DA, 1998. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiology Ecology 26: 71–78.
Śliwiński BJ, Soliva CR, Machmüller A and Kreuzer M, 2002. Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Animal Feed Science and Technology 101:101-114.
Soliva CR, Meile L, Adam Cieslak A, Kreuzer M and Machmuller A, 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. British Journal of Nutrition 92: 689–700.
Tavendale MH, Meagher LP,Pacheco D, Walker N, Attwood GT and Sivakumaran S, 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology 123: 403–419.
Theodorou MK. Williams BA, Dhanoa MS, McAllan AB and France J, 1994. simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technolgy 74: 3583–3597.
Wischer G, Boguhn J, Steinga H, Schollenberger M and Rodehutscord M, 2013. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal 7: 1796–1805.