کنکاش ساختار، جزایر CPG، متیله شدن DNA و پروتئین‌ حاصل از ژن‌های کاندیدای موثر بر ورم پستان در گاو شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

چکیده

زمینه مطالعاتی: متیلاسیون DNA اساساً در دی‏نوکلئوتیدهای CpG اتفاق می­افتد و در تنظیم بیان ژنی درگیر می‏باشد. در پستانداران، مشخص شده است که بیش‎متیلاسون در جزایر CpG با پیری و بیماری‎های مختلف در دام مرتبط است. میزان نیمرخ متیلاسیون ژن‌ها می‌تواند به متخصص اصلاح نژاد کمک کند که برای مدیریت بیماریی که این ژن‌ها در آن درگیر هستند از روش‌های ژنتیک یا وراژنتیک استفاده کند. هدف: کنکاش غیر مستقیم متیلاسیون DNA در سطح ژن‌های کاندیدای موثر در ورم پستان گاوشیری ]ژن‌های اینترلوکین‌ 1 تا 13 (به جز اینترلوکین 8 و 9)، ژن‌ TNF و ژن اینترفرون گاما (در کل 13 ژن کاندید)[ و پروتئین حاصل از این ژن‌ها هدف اصلی پژوهش حاضر است. امید بر آن که بتوان ژن‌های درگیر در این بیماری را از نظر میزان متیلاسیون گروه‌بندی کرد و به اهمیت پدیده ژنتیکی متیلاسیون ژن‌ها در مدیریت بیماری ورم پستان در گاو شیری پی برد. روش کار: ویژگی‌‌هایی مثل مکان ژن، تعداد اگزون، طول کلی اکسون پیرایش یافته و حاشیه‎نویسی شده، درصد گوانین، تعداد گوانین، درصد سیتوزین، تعداد سیتوزین و طول ژن‌ها استخراج شدند. برای استخراج ویژگی‌های وراژنتیک ژن‌های مورد بررسی در این پژوهش، از ترکیبی از انواع نرم افزارهای برخط DBCAT ، SMS و Geneinfinity و یک نرم افزار متکی به ++ C استفاده شد. بعد از استخراج ویژگی‏های ژنی، مشاهده گردید که ژن‌های مورد بررسی از نظر اندازه، تعداد آکسون و درصد GC تفاوت زیادی با هم‌ دارند. با توجه به نوع الگوریتم استفاده شده برای شناسایی جزایر CpG، تعداد و طول جزایر CpG یافت شده متفاوت بود. CpG‌های پیش‏بینی شده به عنوان معیاری غیر مستقیم برای بررسی میزان متیلاسیون در سطح DNA ژن‌ها به کار رفت. نتایج: نتایج نشان داد که به طور میانگین کمتر از 50 درصد جزایر CpG در ناحیه راه‌انداز ژن‌ها قرار داشتند و جزایر CpG متیله شده بیشتر در نواحی بین ژنی توزیع شده بودند. بیشترین میزان متیلاسیون در اینترلوکین‌های 1، 2 و ژن TNF مشاهده شد که از مهم‏ترین ژن‌های سرکوب ورم پستان به شمار می‌روند. درجه متیلاسیون در پروتئین‌های حاصل از ژن‌های مورد بررسی، با نتایج متیلاسیون رخ داده در سطح دی‏ان‏اییِ (DNA) این ژن‌ها همخوانی و مطابقت نداشت. پروتئین حاصله از اینترلوکین‌ 11 در قسمت‌های زیادی از ساختار اولیه خود دچار متیلاسیون می‌شود. در سطح DNA نیز این ژن، بیشترین تعداد CpG را در قسمت راه‌انداز خود داشت. نتیجه‏گیری نهایی: ژن اینترلوکین‌ 11 می‌تواند از کاندید‌های مناسب برای انجام آزمایش‌های دمتیلاسیون، تهیه داروهای زیستی و بررسی اثر آن بر سرکوب عفونت ورم پستان باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Exploring structure, CPG islands, DNA methylation and protein of candidate genes influencing mastitis in dairy cows

نویسندگان [English]

  • M Ghaderi
  • M Amiri
  • L Hashemi
  • F Samadian
چکیده [English]

Introduction: Epigenetics is assumed as the most complex field of biological sciences. Generally, epigenetics includes mechanisms that not only affect gene expression, but also bring about functional changes in the next generation of mitotic cell division (autosomal inheritance) and meiotic cell division (generational inheritance), though DNA nucleotide structure is not changed (Barazandeh, 2016). DNA methylation refers to the enzymatic addition of a CH3 group to a cytosine residue in DNA strand, which occurs almost particularly at CpG dinucleotides (i.e., a cytosine located 5′ of a guanine) in animals. The enzymatic machinery responsible for DNA methylation includes a family of DNA methyltransferases (DNMTs), including the maintenance methyltransferase DNMT1 (responsible for copying pre-existing DNA methylation patterns to the new strand during mitosis) and the de novo methyltransferases DNMT3A/3B. DNA methylation is considered as epigenetics factor. In mammalian, DNA methylation is necessary for both embryonic development and stem cell differentiation and this phenomenon is basically occurring in CpG dinucleotide. CpG dinucleotide intends to make cluster over genome that is called CpG island. CpG islands are considered gene markers and represent an important feature of mammalian genomes. CpG islands vary greatly among mammalian genomes (Medvedeva, 2011). Some factors such as recombination rate and chromosome size might have influenced the evolution of CpG islands in the course of mammalian evolution. Whenever CpG island in gene's promoter is not methylated and suitable transcriptional factors are accessible, gene expression machine is activated and therefore gene is expressed. However, methylation of CpG islands in gene promoter with compact form of chromatin could lead to inhibition of gene expression (Shi et al., 2012). Hypermethlation of CpG islands could cause a range of diseases such as cancer. Epigenetic process could modify proteins after translation that actually refers to biochemical events inflicting on proteins. Some of these events include: methylation, phosphorylation, glycosylation, sulfation, sumoylation, and ubiquitinylation disulfide bonding.
Nutrition is seen as one of the greatest environmental determinants of an individual’s health. Although nutrient quantity and quality could impart direct effects, the interaction of nutrition with genetic and epigenetic is often overlooked despite being shown to influence different biological variation in mammals (Murdoch et al., 2016). Understating and unrevealing complex traits, such as those that are nutrition-related, to determine the genetic and epigenetic contributions toward a phenotype would be a formidable job to get it done. Similar to other epigenetic endpoints, patterns of DNA methylation could be susceptible to alterations by exposing to environmental treatments, including contaminants (Head, 2014). These sort of alterations may persist in the absence of the initial treatments as cells divide, and can even be inherited over generations provided that they occur in the germ line. Although our knowledge concerning patterns of DNA methylation in animals is increasing, a big gap remains in the literature, especially when it does come to species outside of those generally used for biomedical researches. Unlike DNA, epigenetic markers could be directly influenced by the environment factors; therefore, epigenetic markers have been shown to be pivotal mediators of phenotypic responses to environmental signals. To understand how epigenetic modifications facilitate and affect gene expression, it is crucial to understand how and when the epigenome is established (Faulk and Dolinoy, 2011). While we do not fully understand how all of the complex epigenetic genome changes occur, yet some epigenetic information is sought to retain and transmit to the next generation.
Materials and methods: In this study, first of all, some articles and resources that describe candidate genes affecting mastitis were explored and some of the genes which were considered candidate genes in bovine mastitis were chosen. These genes included 14 interleukins (in exception of interleukin 8 and interleukin 9), interferon-gamma, and tumor necrosis factor (in total 13 genes). Their DNA sequences and other features of selected genes (for example exon numbering, gene length, guanine percentage and cytosine percentage) were obtained from NCBI database and saved as FASTA format. The C++ based software and Promoter 2.0 Prediction Server were used to extract characteristics of genes and detecting gene promoters, respectively. This software is generally used to predict transcription factor-biding sites of DNA sequences in vertebrata. In order to detect CpG islands, DBCAT, SMS, and Geneinfinity softwares were used. Also, primary structure of proteins derived from these genes was extracted from NCBI database and finally protein methylation was obtained by using PMeS software. Depending on the type of algorithm used to identify the CpG islands, the number and length of the CpG islands found to be different. Predicted CpGs were used as measurements to indirectly investigate the level of methylation over DNA level of genes.
Results and discussion: The investigated genes in terms of some features like total size based on number of nucleotides, number of exons, total annotated spliced exon length, and percent of GC content were quite different. The essence of gene heterogeneity from different features made grouping of these genes a cumbersome job. In this research, our overall objective was to locate the position and number of CpG in the promoter region of genes. Referencing of applied software to detect CpG islands, number and length of detected CpGs was different. Results shown that methylation was not evenly/ uniformly occurring in considered genes and in average, less than 50 % of CpG islands were in promoter region of genes and methylated CpG was located in intergenic regions. Also, the maximum amount of methylation was seen in interleukin 1, 2, and TNF gene, which are among the most important genes in circumventing mastitis. The degree of methylation in the proteins derived from the investigated genes showed fairly non-concurrence results with their DNA methylation. However, protein derived from interleukin 11 undergoes methylation in large portions of its original protein structure. It should be noted that different algorithm architectures may give different results (Barazandeh, 2016; Medvedeva, 2011). 
At the DNA level, this gene also had the highest CpG in its promoter. This may indicate the complexity of epigenetic process with this gene. Therefore, this gene could be considered as a suitable candidate for performing demethylation experiments and proving biological drugs to circumvent mastitis. An integrative view to gene structure, DNA methylation and methylation of proteins derived from the investigated genes in this research would provide the better idea pertaining to methylation function in circumventing the mastitis in dairy cattle.
Conclusion: Out of the three software tested, the results of the two SMS and Geneinfinity software were almost similar and probably use a similar algorithmic architecture. It should be noted that the algorithms used in this study were not developed to identify specific CpG islands on the bovine genome. The genes under study had undergone a methylation process at many levels of their proteins. The results of this study depend on different algorithmic parameters and changing these parameters were diverse. As matter of fact that mastitis heritability is low in general, such studies could reveal a better role for single and group genes in the epigenetics process.

Auble DT and DeHaseth PL, 1998. Promoter recognition by Escherichia coli RNA polymerase: Influence of DNA structure in the spacer separating the− 10 and− 35 regions. Journal of Molecular Biology 202: 471-482
Barazandeh A, 2016. Whole genome Investigation of Camelidae genome to detect CpG Islands. PhD thesis. ‏
Bird A, 2002. DNA methylation patterns and epigenetic memory. Genes and Development 16: 6-21.
Couldrey C, Brauning R, Bracegirdle J, Maclean P, Henderson HV and Mcewan JC, 2014. Genome-Wide DNA methylation patterns and transcription analysis in sheep muscle. PLoS ONE 9: 1-7.
Couldrey C, Brauning R, Henderson HV and McEwan JC, 2015. Genome-wide DNA methylation analysis: no evidence for stable hemimethylation in the sheep muscle genome. Animal Genetics 46: 185-189.
Du X, Han L, Guo AY and Zhao Z, 2012. Features of methylation and gene expression in the promoter-associated CpG islands using human methylome data. Comparative and Functional Genomics 2012.
Faulk C and Dolinoy DC, 2011. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6(7): 791-797.
Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H and Domann FE, 2002. Role for DNA methylation in the control of cell type–specific maspin expression. Nature Genetics 31:175-179.
Gardiner-Garden M and Frommer M, 1987. CpG islands in vertebrate genomes. Journal of Molecular Biology 196 (2): 261-282.
Goddard ME and Whitelaw E, 2014. The use of epigenetic phenomena for the improvement of sheep and cattle. Frontiers in genetics 5: 247.
Gung M and Pfeifer GP, 2015. Aging and DNA methylation. BMC Biology 13: 1-8.
Han L, Su B, Li WH and Zhao Z, 2008. CpG island density and its correlations with genomic features in mammalian genomes. Genome Biology 9: R79.
Han L and Zhao Z, 2008. Comparative analysis of CpG islands in four fish genomes. Comparative and Functional Genomics Article ID 565631, 6 pages.
Han L and Zhao Z, 2009. Contrast features of CpG islands in the promoter and other regions in the dog genome. Genomics 94: 117-124.
Head JA, 2014. Patterns of DNA methylation in animals: an ecotoxicological perspective. American Zoologist 54(1): 77-86.
Hu Y, Xu H, Li Z, Zheng X, Jia X, Nie Q and Zhang X, 2013. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 8 (2): e56411.
Huang YZ, Sun JJ, Zhang LZ, Li CJ, Womack JE, Li ZJ, Lan XY, Lei CZ, Zhang CL and Zhao X, 2014. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Scientific Reports 4: 6546.
Illingworth R, Kerr A, DeSousa D, Jørgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R and Rogers J, 2008. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLOS Biology 6 (1): e22.
Irizarry RA, Wu H and Feinberg AP, 2009. A species-generalized probabilistic model-based definition of CpG islands. Mammalian Genome 20: 674-680.
Jia M, Gao X, Zhang Y, Hoffmeister M and Brenner H, 2016. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review. Clinical Epigenetics 8: 25.
Jiang C, Han L, Su B, Li WH and Zhao Z, 2007. Features and trend of loss of promoter-associated CpG islands in the human and mouse genomes. Molecular Biology and Evolution 24: 1991-2000.
Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F and Reid G, 2008. Transient cyclical methylation of promoter DNA. Nature 452: 112-115.
Kwak W, Kim J, Kim D, Hong JS and Jeong JH, 2014. Genome-wide DNA methylation profiles of small intestine and liver in fast-growing and slow-growing weaning piglets. Asian-Australasian Journal of Animal Sciences 27: 1532-1539.
Larsen F, Gundersen G, Lopez R and Prydz H, 1992. CpG islands as gene markers in the human genome. Genomics13: 1095-1107.
Medvedeva YA, 2011. Algorithms for CpG islands search: New advantages and old problems. In: Mahdavi MA (Ed.), Bioinformatics - Trends and Methodologies, InTech, pp. 449-470.
Murdoch BM, Murdoch GK, Greenwood S, McKay S, 2016. Nutritional influence on epigenetic marks and effect on livestock production. Frontiers in Genetics, 7: 182.
Ohgane J, Wakayama T, Senda S, Yamazaki Y, Inoue K, Ogura A, Marh J, Tanaka S, Yanagimachi R and Shiota K, 2004. The Sall3 locus is an epigenetic hotspot of aberrant DNA methylation associated with lacentomegaly of cloned mice. Genes Cells 9: 253-260.
Reik W, Dean W and Walter J, 2001. Epigenetic reprogramming in mammalian development. Science 293 (5532): 1089-1093.
Shahdadi AA, Shariati MM, Nassiri MR, Zereh Daran S and Saghi DA, 2017. The study of factors affecting culling and survival distribution function in Iranian Holstein cows. Journal of Animal Science Researches (Agricultural Science) 28(1): 58-64. (In Persian)
Sati S, Tanwar VS, Kumar KA, Patowary A, Jain V, Ghosh S, Ahmad S, Singh M, Reddy SU and Chandak GR, 2012. High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS One 7: e31621.
 Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY and Liang RP, 2012. PMeS: Prediction of methylation sites based on enhanced feature encoding scheme. PloS One 7(6): e38772.
Shames DS, Minna JD and Gazdar AF, 2007. DNA methylation in health, disease and cancer. Current Molecular Medicine 7: 85-102.
Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H and Held WA, 2005. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proceeding of National Academic Science 102: 3336-3341.
Su J, Wang Y, Xing X, Liu J and Zhang Y, 2014. Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics 15: 12.
Taberlay PC, Statham AL, Kelly TK, Clark SJ and Jones PA 2014. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Research 24: 1-13.
Takai D and Jones PA, 2002. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences 99 (6): 3740-3745.
Wang XS, Zhang Y, He YH, Ma PP, Fan LJ, Wang YC, Zhang YI, Sun DX, Zhang SL, Wang CD, Song JZ and Yu Y, 2013. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genetics and Molecular Research 12 (4): 6228-6239.
Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M and Schübeler D, 2007. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics 39: 457-466.
Wrzodek C, Büchel F, Hinselmann G, Eichner J, Mittag F and Zell A, 2012. Linking the epigenome to the genome: Correlation of different features to DNA methylation of CpG islands. PLoS One 7: e35327.